The Interactive Fly

Zygotically transcribed genes

Photoperiod response and sleep

  • Proteins involved in photoperiod response
  • Circadian regulation of gene expression systems in the Drosophila head
  • Control of daily transcript oscillations in Drosophila by light and the circadian clock
  • Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression
  • Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods
  • Functional analysis of circadian pacemaker neurons in Drosophila melanogaster
  • The Drosophila circadian network is a seasonal timer
  • Moonlight shifts the endogenous clock of Drosophila melanogaster
  • Large ventral lateral neurons modulate arousal and sleep in Drosophila
  • A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain
  • Roles of dopamine in circadian rhythmicity and extreme light sensitivity of circadian entrainment
  • Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling
  • PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit
  • The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity
  • Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons
  • Drosophila pacemaker neurons require G protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms
  • GABAB receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster
  • Balance of activity between LNvs and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila
  • Identification of a circadian output circuit for rest:activity rhythms in Drosophila
  • Light-induced structural and functional plasticity in Drosophila larval visual system
  • Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs
  • Circadian rhythm of temperature preference and its neural control in Drosophila
  • Natural populations of Drosophila melanogaster reveal features of an uncharacterized circadian property: the lower temperature limit of rhythmicity
  • Unexpected features of Drosophila circadian behavioural rhythms under natural conditions
  • Short neuropeptide f is a sleep-promoting inhibitory modulator
  • Identification of Redeye, a new sleep-regulating protein whose expression is modulated by sleep amount
  • Wide awake mediates the circadian timing of sleep onset
  • Circadian pacemaker neurons change synaptic contacts across the day
  • Genetic rescue of functional senescence in synaptic and behavioral plasticity
  • The MAP kinase p38 is part of Drosophila melanogaster's circadian clock
  • Class IIa histone deacetylases are conserved regulators of circadian function
    Proteins involved in photoperiod response

    Proteins involved in regulation of sleep

    Circadian regulation of gene expression systems in the Drosophila head

    Mechanisms composing Drosophila's clock are conserved within the animal kingdom. To learn how such clocks influence behavioral and physiological rhythms, the complement of circadian transcripts in adult Drosophila heads was determined. High-density oligonucleotide arrays were used to collect data in the form of three 12-point time course experiments spanning a total of 6 days. Analyses of 24 hr Fourier components of the expression patterns revealed significant oscillations for ~400 transcripts. Based on secondary filters and experimental verifications, a subset of 158 genes showed particularly robust cycling and many oscillatory phases. Circadian expression is associated with genes involved in diverse biological processes, including learning and memory/synapse function, vision, olfaction, locomotion, detoxification, and areas of metabolism. Data collected from three different clock mutants (per0, tim01, and ClkJrk), are consistent with both known and novel regulatory mechanisms controlling circadian transcription (Claridge-Chang, 2001).

    A genome-wide expression analysis was performed aimed at identifying all transcripts from the fruit fly head that exhibit circadian oscillations in their expression. By taking time points every 4 hr, a data set was obtained that has a high enough sampling rate to reliably extract 24 hr Fourier components. Time course experiments spanning a day of entrainment followed by a day of free-running were performed to take advantage of both the self-sustaining property of circadian patterns and the improved amplitude and synchrony of circadian patterns found during entrainment. 36 RNA isolates from wild-type adult fruit fly heads, representing three 2 day time courses, were analyzed on high-density oligonucleotide arrays. Each array contained 14,010 probe sets (each composed of 14 pairs of oligonucleotide features) including ~13,600 genes annotated from complete sequence determination of the Drosophila genome. To identify different regulatory patterns underlying circadian transcript oscillations, four-point time course data was colleced from three strains of mutant flies with defects in clock genes (per0, tim01, and ClkJrk) during a single day of entrainment. Because all previously known clock-controlled genes cease to oscillate in these mutants but exhibit changes in their average absolute expression levels, the analysis of the mutant data was focused on changes in absolute expression levels rather than on evaluations of periodicity (Claridge-Chang, 2001).

    To organize the 158 statistically significant circadian transcripts in a way that was informed by the data, hierarchical clustering was performed. Both the log ratio wild-type data (normalized per experiment) and the log ratios for each of the three clock mutants (normalized to the entire data set) were included to achieve clusters that have both a more or less uniform phase and a uniform pattern of responses to defects in the circadian clock. One of the most interesting clusters generated by this organization is the per cluster. This cluster contains genes that have an expression peak around ZT16 and a tendency to be reduced in expression in the ClkJrk mutant. Strikingly, all genes previously known to show this pattern of oscillation (per, tim, vri) are found in this cluster. In fact, the tim gene, which has multiple representations on the oligonucleotide arrays, has two independent representations in this cluster. Together with the novel oscillator CG5798, per, tim, and vri form a subcluster (average phase ZT14) that shows upregulation in both the per0 and tim01 mutants. The fact that per, tim, and vri all function in the central circadian clock raises the possibility that several other genes from this cluster, including the ubiquitin thiolesterase gene CG5798 and the gene coding for the channel modulator Slowpoke binding protein (Slob) may function in the circadian clock or directly downstream of it (Claridge-Chang, 2001).

    The genes in a second cluster (Clock cluster are primarily grouped together based on their peak phase (average phase ZT2). By virtue of the mutant expression data, several subclusters within this phase group can be identified. The known circadian genes Clock and takeout (to) are part of this cluster. Clk is found in a clustered pair with the leucyl aminopeptidase gene CG9285. In terms of chromosomal organization, to, CG11891, and CG10513 map closely together on chromosome 3R. Two additional circadian genes in this chromosomal region (CG11852, CG1055). Interestingly, the Clk cluster contains three pairs of homologous genes with very similar expression patterns: the UDP-glycosyl transferase genes Ugt35a and Ugt35b, the enteropeptidase genes CG9645 and CG9649, and the long-chain fatty acid transporter genes CG6178 and CG11407. In the first two cases, the homologous genes are also directly adjacent to each other on the chromosome. An overview of the map positions of all circadian genes in this study is available as supplemental information online ( Apart from Ugt35a and Ugt35b, several other genes with a predicted function in detoxification are members of the Clk cluster (CG17524, CG8993, CG3174, Cyp6a21). It may also be noteworthy that the genes for three oxidoreductases found in this group [Photoreceptor dehydrogenase (Pdh), CG15093, CG12116] have almost identical phases (ZT3) (Claridge-Chang, 2001).

    All genes of the apterous (ap) cluster are defined by both the oscillatory phase of their expression pattern (average phase ZT17) and by a distinct expression profile in the three clock mutants. Although the 6 hr sampling interval in the mutant data makes it difficult to reliably detect oscillations, it seems that the majority of the genes in this cluster shows some degree of periodicity in the three mutant light-dark regime (LD) time courses. Although it cannot be ruled out that there are circadian oscillations independent from the known clock genes, the hypothesis that there may be a light-driven response underlying the observed mutant expression pattern is favored. The genes in this group may, therefore, be regulated not only by the circadian clock, but also by a direct light-dependent mechanism. It should be mentioned that evidence of gene expression patterns that are purely light-driven in wild-type flies was sought, but little indication was found of such regulation. Instead, genes with both a strong light-driven oscillation and a weak circadian component were encountered. apterous (ap) encodes a LIM-homeobox transcription factor, which is known to act both in neural development and in neuropeptide expression. The ap cluster includes the genes for the transcription factor moira, the synaptic regulator syndapin, two septins (Sep1 and CG9699), and two ATP binding cassette (ABC) transporters (CG6162, CG9990). In terms of chromosomal organization, CG6166, the gene adjacent to CG6162 on chromosome 3R is homologous to CG9990 and coregulated with CG6162 and CG9990 (Claridge-Chang, 2001).

    The founding member of the fourth cluster, ebony (e), encodes ß-alanyl-dopamine synthase and has roles in both cuticle tanning and regulating circadian locomotor behavior. Among the other cluster members are six genes that function in protein cleavage (CG9377, Ser99Da, SP1029, CG7828, CG11531, BcDNA:GH02435), three transcription factor genes (CG15632, CG17257, CG6755), as well as two genes each that act in signal transduction (prune, loco), the cytoskeleton (TpnC47D, Chd64), and lipid metabolism (ATPCL, CG1583) (Claridge-Chang, 2001).

    The per0, tim01, and ClkJrk mutations affect genes that are essential for maintaining circadian rhythms and result in both molecular and behavioral arrhythmicity. In addition to abrogating the oscillations of the per, tim, vri, to, and Clk transcripts, these mutations also affect their absolute levels of expression. per0 and tim01 flies have intermediate or somewhat elevated levels of per, tim, vri, and to transcript, and decreased levels of Clk transcript whereas ClkJrk mutants have the opposite effect. Based on these observations, genome-wide expression data was gathered from per0, tim01, and ClkJrk mutant flies in three separate four-point time course experiments. A rank-sum Wilcoxon test was employed to determine if any of the interrogated transcripts were significantly up- or down-regulated in any of the mutants when compared to the total wild-type expression data set (Claridge-Chang, 2001).

    Out of the 14010 probe sets on the arrays, 4865 showed up- or down-regulation in one or more of the three mutants with a p value lower than 0.05; 2544 were significantly changed in the tim01 flies; 1810 were significantly different in per0, and 2181 in ClkJrk. It is unclear what proportion of these changes depends on the actual mutations themselves, because (1) the three mutant fly strains have different genetic backgrounds and (2) data was collected for only one population of each mutant strain. Although there are known examples of noncircadian genes whose expression is affected by clock mutations, it was decided that it would be more informative to consider effects of the clock mutations only with respect to the subset of 158 strong oscillators. Among this set, 72 genes were found with one or more significant expression changes in the three clock mutant strains (Claridge-Chang, 2001).

    Included in the regulated set are tim (twice independently), vri, to, and Clk, and their patterns agree with previously published observations. The hierarchical clustergram shows four basic patterns of regulation: (type I) increased in per0 and tim01 but decreased in ClkJrk (e.g., vri, CG5798); (type II) decreased in per0 and tim01 but increased in ClkJrk (e.g., Clk, CG15447); (type III) decreased in all three mutants (e.g., Ugt36Bc/CG17932, ea), and (type IV) increased in all three mutants (e.g., Pdh, CG11891). Type I and II match the two known modes of regulation for circadian genes. The behavioral and molecular phenotypes of the per0 and tim01 mutations are almost identical. It may, therefore, be relevant that no circadian genes are found that are significantly upregulated in per0 and significantly downregulated in tim01 or vice versa. Apart from genes that were a priori predicted to have expression patterns of type I (vri, tim, to) or II (Clk), novel genes were found for each of these two expression patterns. The average phases for the type I and type II subclusters are, respectively, ZT12 and ZT7, but there is large variation in phase among the members of each of these subclusters. to is in the type I subcluster and has a phase peak at ZT2, whereas CG15447 is in the type II subcluster and peaks at ZT10. This phenomenon of phase differences among transcripts with a similar response to clock defects has been described previously for type I regulation in the case of to. Here, a similar phenomenon was detected for genes with Clk-like type II regulation. Type III and IV predict a novel and unexpected response to the circadian mutants (Claridge-Chang, 2001).

    The promoter sequences of the set of 158 genes was tested for the presence of known and candidate circadian enhancer motifs. The results suggest that in fact this set is enriched in such elements. For example, the frequency of E boxes in the set of oscillators (42 hits in total) is significantly higher than the frequency in random selections of genes. The significance of this result does, however, depend on the inclusion of well-studied genes (per, tim, vri). Some novel oscillators with remarkable frequencies of 'circadian transcription elements' are loco (1 PDP1 site; 3 W boxes; 8 CRE elements; 3 TER elements); trpl (1 E box; 1 PDP1 site; 9 W boxes; 6 CRE elements; 12 TER elements); Rh5 (5 W boxes; 5 CRE elements; 6 TER elements), and Slob (1 E box; 1 PERR element; 2 PDP1 sites; 6 W boxes; 15 TER elements). It is noteworthy that many robustly cycling genes have no known circadian transcription elements in their promoters or first introns (Claridge-Chang, 2001).

    The set of 158 circadian genes were organized according to annotated or predicted molecular function. Several of these functional classes may provide insights into pathways influencing rhythmic behavior (Claridge-Chang, 2001).

    Synaptic Transmission and Plasticity
    An emerging theory of the function of sleep postulates that it is required for neural plasticity, synaptic maintenance, and remodelling. Behaviorally defined sleep has been identified in the fly, with behavioral recordings in LD indicating increased rest during the dark phase. The assay for circadian expression uncovered a number of genes known to be involved in synaptic function and synaptic plasticity (Claridge-Chang, 2001).

    Three oscillating trancripts encode synaptic vesicle endocytosis factors: ß-adaptin (Bap), AP-1gamma, and syndapin. The first two are adaptors between the budding membrane and clathrin lattice, while syndapin is thought to connect vesicle endocytosis to actin. Clock modulation of the synaptic vesicle pool is consistent with the idea of modulated synaptic function, although it is unclear what effect raising or lowering endocytotic factors would have on synaptic function (Claridge-Chang, 2001).

    The Slob transcript peaks at ZT15 and is downregulated in the ClkJrk mutant, suggesting that CLK acts as an activator of Slob. There is an E box 5.4 kb upstream of the Slob transcriptional start site raising the possibility that CLK acts directly on the Slob promoter (Claridge-Chang, 2001).

    If the cycling transcript can be shown to produce oscillating Slob protein, this could indicate a potent mechanism for rhythmic control of synaptic function, including synaptic plasticity: Slob protein binds the calcium-dependent potassium channel Slowpoke (Slo) and has been shown to increase Slo activity and voltage sensitivity. Slob is in turn bound by a second channel regulator, Leonardo. Hypomorphic mutations of leonardo produce defects in learning, and electrophysiological analyses of the larval neuromuscular junction (NMJ) in these mutants show presynaptic function and plasticity is greatly impaired in these animals. In contrast to Slob, Leonardo is a strong inhibitor of Slo, but requires Slob for this interaction. All three proteins colocalize to the presynaptic bouton at larval NMJs. Thus, Slob may contribute to a switching mechanism that ultimately places Slo channel activity under circadian control (Claridge-Chang, 2001).

    Slo channels are widely expressed in the adult fly head, including the eye, lamina, medulla, central brain, and mushroom bodies, but it is not known which subset of these areas contain oscillating Slob expression. In situ hybridization was performed with larval brains to localize Slob RNA expression. Prominent staining was observed in a restricted region consistent with placement of the developing mushroom body. The staining also corresponds well with that region of the larval brain receiving PDF-rich projections of the circadian pacemaker cells, the lateral neurons. In future studies, it will be important to determine whether presence of the innervating LNs is required for cycling Slob expression (Claridge-Chang, 2001).

    leonardo was initially implicated in presynaptic function by the effect of mutations on learning. Mutations of latheo also cause learning defects, and this protein is also found at larval NMJs. Lowered latheo function has been associated with elevated synaptic transmission and reduced synaptic plasticity. latheo shows cycling expression with peak accumulation at ZT12-15. Rhythmicity was detected in the expression of dunce and Calpain-B genes involved in learning and synaptic long-term potentiation, respectively (Claridge-Chang, 2001).

    Amine Neurotransmitter-Related Functions
    Two serotonin receptor transcripts, 5-HT2 and 5-HT1A, were found to oscillate with phases of ZT15 and ZT18, respectively. Serotonin is known to be involved in a variety of neuronal processes in animals, including synaptic plasticity, clock entrainment, and mating behavior. The 104 serotonergic neurons in the adult CNS have been mapped, but no studies have been done of either 5-HT receptor localization or receptor mutant phenotypes. Neither of these receptors are orthologs of the mammalian 5-HT receptor implicated in photic clock entrainment; this would be represented by theDrosophila 5-HT7 gene. 5-HT1A belongs in a class of receptors that respond to agonists by decreasing cellular cAMP, while 5-HT2 is homologous to mammalian receptors whose main mode of action involves activation of phospholipase C, a function involved in synaptic plasticity (Claridge-Chang, 2001).

    The ebony transcript was found to oscillate, showing a peak of expression around ZT5. ebony oscillation connects with a body of earlier evidence linking ebony to circadian activity rhythms. ebony hypomorphs show severe defects in circadian rhythm including arrhythmicity/aberrant periodicity in the free-running condition, as well as abnormal activity patterns in LD conditions. Ebony is a putative ß-alanyl dopamine synthetase, and hypomorphs show elevated levels of dopamine. Dopamine has been implicated in control of motor behavior, since it induces reflexive locomotion in decapitated flies, and this response is under circadian control. The results suggest that oscillations of ebony contribute to the assembly of rhythmic locomotor behavior. Other evidence points to a role in clock resetting. In addition to impaired entrainment in LD, ebony flies show an abnormal ERG, and ebony is strongly expressed in the lamina and the medulla optic neuropile, a region associated with vision rather than motor control (Claridge-Chang, 2001).

    The Drosophila eye is both a likely target of clock control and partly responsible for photic input to the central pacemaker. Several genes found to oscillate by microarray assay are components of visual processes (Claridge-Chang, 2001).

    Photoreceptor cells contain peripheral clocks, suggesting that visual function may be regulated by the clock. In vertebrates, the synthesis of various visual components is known to be under circadian control. In Drosophila, electroretinogram (ERG) measurements of visual sensitivity reveal a 4-fold cycle in sensitivity, with a minimum at ZT4 and a broad peak around lights off (ZT12). This suggests that some of the fly visual components are clock controlled. However, a previous study of five major phototransduction components found no cycling of either mRNA or protein. In this genome-wide assay, the trpl transcript was found to oscillate with peak expression at ZT11. TRPL is one of two ion channels in the visual transduction pathway, along with TRP, a paralog. TRPL and TRP open in response to a G protein-coupled phosphoinositide cascade that is initiated by the isomerization of rhodopsin by light. Their opening produces the light-sensitive conductance in the photoreceptors. Amorphic mutants of each channel show visual defects, while the double null genotype results in a blind fly. A cycling trpl transcript could contribute to the visual sensitivity cycle: (1) the two phenomena are in the same phase with both sensitivity and trpl expression peaking around lights-off; (2) it is estimated that TRPL contributes about half of the wild-type conductance, allowing for a substantial range of modulation by reducing TRPL function. Another possible role for oscillating TRPL function is connected with circadian entrainment. In addition to being blind, trp/trpl double null mutants show reduced circadian behavioral resetting and less TIM degradation in response to light pulses. It is noted that the established entrainment factor CRY is known to cycle and that interactions of CRY and TIM are essential for light-dependent TIM degradation. The oscillating, clock-related protein VIVID has also been shown to regulate photo-entrainment in Neurospora (Claridge-Chang, 2001).

    The microarray experiments show that two opsin genes are under circadian control: Rh5 and Rh4. The Rh5 mRNA rhythm peaks at ~ZT 21, while the Rh4 array data show a circadian pattern with a peak 4 hr later, at ZT1. Rh5 is a blue-absorbing rhodopsin expressed in a subset of R8 cells at the base of the retina, while Rh4 is a UV-absorbing pigment expressed in apical R7 cells. Rh5 is never expressed in an R8 cell underlying an Rh4-expressing R7 cell, so in this way all ommatidia would contain one cycling rhodopsin. In terms of regulating sensory receptiveness to light, it is unclear why these two opsins should be targets for clock control. The major blue rhodopsin Rh1 does not cycle so it seems unlikely that an oscillation in these two minor pigments would produce overall tuning of the sensitivity of the fly visual system (Claridge-Chang, 2001).

    NinaA is a rhodopsin chaperone and is required to move Rh1 from the endoplasmic reticulum (ER) to the rhabdomeric membrane. ninaA mutants display aberrant accumulation of Rh1 protein in the ER. ninaA mRNA shows cycling expression in fly heads by both array and Northern blot, with peak expression around ZT2. It is tempting to hypothesize that early morning ninaA upregulation would have the effect of releasing a reservoir of Rh1 from the ER, making it available for use in visual transduction. However, a previous assay of NinaA levels in an LD regime revealed no oscillation in protein levels. If true, this would represent a surprising example of a robustly oscillating mRNA producing a constitutive cognate protein. Finally, although its function is still unknown, Photoreceptor dehydrogenase is a robustly oscillating transcript with an extremely high level of expression in the screening pigment cells of the eye (Claridge-Chang, 2001).

    Rhythmic Proteases and Accessory Factors
    Fifteen of the identified oscillatory genes are implicated in protein cleavage. CG7828 and BcDNA:GH02435 (peak phase ZT6 and ZT10, respectively) mediate ubiquitination of protein substrates, thus targeting them for degradation. Conversely, CG5798 and CG7288 cycle with a peak at respectively, ZT14 and ZT16, and each produces a ubiquitin specific protease (Ubp; cleaves ubiquitin from ubiquitin-protein conjugates) that may act to prevent the degradation of specific protein targets. Two metalloprotease genes, two aminopeptidase genes, and five serine peptidases show circadian oscillation. Four of the five serine peptidase genes cycle with a peak phase between ZT4-7. This profusion of oscillating proteases suggests that circadian proteolysis may represent a broad mechanism of clock control, both of clock components themselves, as well as output factors (Claridge-Chang, 2001).

    While circadian transcriptional mechanisms are relatively well understood, less is known about posttranslational mechanisms of circadian regulation. Proteases are known to be involved in circadian control of the degradation of some central clock components, and the clock proteins PER, TIM, CLK, CRY, and VRI are all known to undergo daily cycles of protein accumulation. Degradation of TIM is responsible for photic resetting of the Drosophila clock. This is thought to be mediated by interaction with CRY, followed by ubiquitination and proteasome-dependent loss of TIM. Nothing is known about the factors mediating TIM degradation in the dark, yet patterns of CG5798 expression may be of interest in this regard as this gene encodes a cycling Ubp whose peak expression (ZT14) immediately precedes an interval of rapid TIM accumulation in pacemaker cells (Claridge-Chang, 2001).

    A likely clock-related target of one or more proteases is the neuropeptide PDF, whose regulation may be crucial to linking the clock to behavior. While pdf RNA is expressed constitutively, the peptide accumulates rhythmically under indirect control of the clock gene vri. This mechanism has not been further explored, but a clear possibility is that a PDF propeptide is cleaved rhythmically, allowing cyclical release of active PDF. Of the 15 cycling proteases suggested by this study, CG4723 may be of special interest due to its inclusion in a class of proteases known to cleave neuropeptides. The phase of CG4723 expression, ZT4, also coincides with that of PDF immunoreactivity in the Drosophila head (Claridge-Chang, 2001).

    Detoxification and Oxidative Stress
    One hypothesis of sleep characterizes it as a cellular detoxification and repair process. Twelve genes were found that have a predicted role in detoxification. Three additional redox enzymes may also participate in this process. Toxins are initially modified into reactive species by reductases/dehydrogenases and cytochrome P450 molecules. Then glutathione-S-transferases (GSTs) and UDP-glycosyl transferases add polar groups to the substrates to render them hydrophilic for elimination by secretion. Four results are noteworthy: (1) following this pathway, the genes for three circadian dehydrogenases: Pdh, CG10593, and CG12116, were found.; (2) both morning and night cytochrome P450 genes (Cyp6a21 and Cyp305a1) were found to peak early in the day (ZT0 and ZT5), whereas Cyp18a1 and Cyp4d21 peak at approximately the same time late at night (ZT18 and ZT19); (3) while CG17524 is the only GST gene found in the core set, it was noticed that two other members of the GST type III gene cluster on chromosome 2R show 24 hr periodicity (CG17523; CG17527) and (4) UDP-glycosyl transferase genes are represented in the circadian set by Ugt35a, Ugt35b, and Ugt36Bc. Of these, Ugt35b encodes an antennal specific transcript with a potential role in olfaction, whereas Ugt35a is expressed more uniformly (Claridge-Chang, 2001).

    CG13848 is an alpha-tocopherol transfer protein (alpha-TTP) that is strongly expressed in certain basal cells of the eye, showing peak expression around dawn. Humans with mutations in the homologous alpha-TTP show neurodegenerative ataxia that is associated with a deficiency in alpha-tocopherol (vitamin E) incorporation into lipoprotein particles. Vitamin E acts as an antioxidant, and it is thought that this activity allows it to protect neurons from damage by free radicals. Also from human studies, it is known that photoreceptor cells are particularly susceptible to oxidative damage due to high levels of polyunsaturated fatty acids in the photoreceptor membrane, and their exposure to visible light. Thus, it is proposed that the dawn phase of CG13848 represents an upregulation of alpha-TTP for increased daytime transfer of photoprotective vitamin E into the photoreceptor membrane. Also in the circadian set, Catalase (encoded by Cat) and a thioredoxin (encoded by CG8993) are both involved in neutralizing reactive oxygen species (Claridge-Chang, 2001).

    Different aspects of metabolism are represented among the selected set of oscillating transcripts: lipid metabolism (five genes), amino acid metabolism (three), carbohydrate metabolism (three), and glycoprotein biosynthesis (two). Intriguingly, Zw encodes glucose-6-phosphate 1-dehydrogenase of the pentose-phosphate pathway (PPP), while CG10611 encodes fructose-bisphosphatase in gluconeogenesis. The two pathways have antagonizing roles in glucose metabolism; both genes are key control points in their respective pathway and are maximally expressed in opposite phases. Zw transcripts are at their zenith just before dusk (ZT11), whereas CG10611 transcripts peak at dawn (ZT0). Thus, the antiphase oscillation of these two genes may produce daily alternation between glucose anabolism and catabolism. Zw and CG10611 transcript levels also respond in opposite fashion to clock defects: Zw levels are significantly decreased in per0 and tim01 mutants, whereas, CG10611 is significantly upregulated in tim01 (Claridge-Chang, 2001).

    In more direct relation to the clock itself, Zw is the first committed step in the PPP and generally thought to control flux through this pathway. The PPP is the major pathway of NAD (or NADP) conversion to NAD(P)H. It was recently shown that NAD(P)H can bind homologs of CLK and CYC, promoting their dimerization and DNA binding. Maximal Zw expression at ZT11 -- and therefore presumably NAD(P)H production via the PPP -- is coincident with maximal per and tim transcription by CLK/CYC. This information is consistent with Zw participating in a NAD(P)H-mediated autoregulatory loop of the clockworks (Claridge-Chang, 2001).

    Nucleic Acid Metabolism
    A subset of 15 genes involved in nucleic acid metabolism were found. This includes five genes encoding specific RNA polymerase II transcription factors. Four of these encode parts of the circadian clock itself (per, tim, vri, and Clk), whereas the fifth one, apterous (ap), generates a homeobox transcription factor with a role in neurogenesis and the expression of neuropeptides. Taf30alpha2 is a subunit of the general transcription factor TFIID, while moira (mor) is part of the SWI-SNF chromatin-remodeling complex. One splicing factor gene (DebB) and one DNA repair gene (CG4049) are also found among this set of oscillating transcripts (Claridge-Chang, 2001).

    Circadian genes with a role in the cytoskeleton include those encoding two actin binding proteins (Chd64, CG11605), a troponin C (TpnC47D), and two septins (Sep-1 and CG9699). Chd64 (phase peak ZT4) and TpnC47D (phase peak ZT7) function specifically in muscle contraction. Another Drosophila Troponin C, TpnC73F, is found to peak at ZT6 (Claridge-Chang, 2001).

    In conclusion, a set of 158 genes expressed with a robust circadian rhythm in the adult Drosophila head was found by microarray screening. These encompass a wide variety of molecular functions, and expression patterns represented essentially all circadian phases. A larger set of genes was identified (393 entries; 293 entries after secondary filters), and the statistical approach again indicated significant circadian rhythmicity for these, but they were characterized by somewhat less robust oscillations than those of the smaller set. Independent verifications indicated substantial enrichment for cycling gene expression in this larger set and beyond. 532 genes passed secondary filters for 24 hr autocorrelation, noise, and the range-to-noise measure. From the frequency of Northern-verified oscillations detected in this larger pool of candidate genes, it is believed that the total complement of circadian genes would include ~400-500 in the adult head (Claridge-Chang, 2001).

    There are important factors that might lead to an underestimation of the total complement of circadian genes. The approach that was used would favor genes that are homogeneously expressed in the head. If the same gene is expressed with varied phases in different head tissues, this will lessen the robustness of the apparent oscillation and phase. Similarly, if only a restricted portion of the head generates the cycling gene pattern, but constitutive expression is found elsewhere in the head, amplitude of the signal will be diminished. Differences of this sort might be expected in cases where a cycling gene product produces a limited physiological effect. Regulation of this type might be expected in the antennae, where, for example, electrophysiological responses to odorants vary with a circadian rhythm. It should also be stressed that only the fully differentiated adult head has been sampled. If transient patterns of circadian expression occur during development, these would go unnoticed in the experiment. Given the plethora of tissues housing autonomous circadian clocks, an expanded list of rhythmic genes would probably be derived from any related sampling of the body (e.g., wings, legs, excretory, and digestive tissues), especially as this tissue autonomy may reflect a requirement for tissue-specific pathways of circadian control that lie downstream from a largely uniform clock mechanism (Claridge-Chang, 2001).

    How will the many patterns of cycling gene expression be further explored? Molecular tools that reveal the importance of oscillating gene activity have already been applied to a study of several clock genes in Drosophila. In these studies, oscillating patterns of a target gene's expression have been replaced with constitutive activity. Central questions related to vri, per, and tim function have each been explored in this manner. The present study allows an expansion of such work to address the molecular connections between individual behaviors and circadian clocks (Claridge-Chang, 2001).

    Control of daily transcript oscillations in Drosophila by light and the circadian clock

    The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study the relationship between autonomous transcript oscillations and light-driven transcript responses were examined. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12- to 48-h period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many light-responsive transcripts are preferentially expressed in the compound eyes and the phospholipase C component of phototransduction, NORPA (no receptor potential), is required for their light-dependent regulation. Although there is evidence for the existence of multiple molecular clock circuits in cyanobacteria, protists, plants, and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod (Wijnen, 2006).

    In recent years, five different sets of circadian transcripts have been proposed for the Drosophila head. Unfortunately, the overlap between these transcript sets is very poor (seven transcripts), and it falsely excludes numerous confirmed circadian transcript oscillations. These recent genome-wide surveys for rhythmic transcription have defined groups of circadian transcripts based on empirical ranking and filtering approaches, often using necessarily arbitrary cut-offs. To complement these studies a method was developed for examining periodic expression at the systems level, allowing pursuit of a number of new investigations. This new strategy enabled description of the programs of circadian and light-driven transcription in the adult fly head. Because this method emphasizes uniformity in period length and peak phase while tolerating inter-experimental variability in amplitude, it is particularly successful at measuring oscillatory trends across different independent experiments. Integrative analysis of all available microarray time-series data allowed detection and ranking of oscillatory transcript profiles with improved resolution and revealed a circadian expression program that is much more substantial than the apparent consensus (or lack thereof) between different published studies indicates. Some of the best described and strongest circadian oscillations (per, Clk, Pdp1, cry, and to) were missed in one or more of the previously published studies, but all of these rank high in the current integrative analysis. Although there are relatively few genes (~50) that show the same level of circadian regulation as the oscillating components in the core clock circuits (per, tim, Clk, cry, vri, and Pdp1), the results provide evidence for a substantially broader circadian expression program downstream of the core oscillator. This suggests that the circadian clock is responsible for both the purely circadian expression patterns of a limited set of genes and the partial circadian regulation of a much greater group (Wijnen, 2006).

    Whereas many of the genes composing the Drosophila clock are expressed with a circadian rhythm in wild-type flies, all known clock gene oscillations cease if just one of them is lost by mutation. It was reasoned that all of the circadian oscillations in gene expression that were identified in this study should stop in tim01 mutants if these were truly devoid of a circadian clock. Alternatively, rhythmicity could theoretically persist in a subset of the genes if their expression depended on a parallel, novel circadian clock. The distribution analyses allowed addressing of these two alternative possibilities. No alternative systems of oscillatory expression are detectable for the 12-48-h range of period lengths. In the absence of tim-dependent clock circuits, no circadian patterns of gene expression were detected. This latter result, from microarray and Northern analyses, is in agreement with earlier observations, with limited sampling of individual circadian transcripts. Moreover, the absence of detectable molecular circadian rhythms fits well with the abolition of circadian eclosion and locomotor rhythms in tim01 flies. Thus, Drosophila appears to possess only one, tim-dependent, circadian clock. This observation contrasts with results from cyanobacteria, protists, fungi, and plants that suggest the presence of multiple oscillators, sometimes even in the same cell. Although there is no compelling evidence supporting the existence of alternative circadian clocks in Drosophila that are not entrainable to light or independent from transcriptional rhythms, this study does not disprove these possibilities. The results complement and extend previous microarray and differential display analyses using different arrhythmic mutants (per0 or Clkjrk) in which few or apparently no daily transcript oscillations persisted in the mutant context (Wijnen, 2006).

    Comparative analysis of data collected from wild-type and arrhythmic mutant flies in the presence or absence of an environmental photocycle allowed identification of a program of light-driven regulation. The tim01 mutant flies used for these experiments do not just have a defective circadian clock, but because TIM degradation is a major mechanism of clock re-setting, they have also lost the main photic input pathway that entrains the clock circuits to light. In a wild-type context, light can directly entrain clock-bearing tissues in a cell-autonomous manner by activating the circadian photoreceptor CRY, or it can entrain the pacemaker neurons in the brain via phototransduction in the visual organs. TIM is the target for CRY's effect on the clock circuits, and it may also play a role in mediating entrainment via the visual organs. In spite of their defective clock circuits and circadian entrainment pathways, tim01 mutant flies retain an extensive set of daily transcript oscillations in the presence of an environmental photocycle. By comparing the light-driven expression signature that was found for tim01 with the microarray analysis for per0 LD and with confirmatory northern analyses, it was established that many light-driven transcripts show the same expression profiles in per0 and tim01 arrhythmic mutants. Moreover, the light-driven expression response found in a combined per0 and tim01 LD microarray dataset is comparable in size to the clock-dependent circadian expression program (Wijnen, 2006).

    Light-regulated genes fall into two classes, a clock-independent class, and a group of genes that are also clock-controlled. That there are clock-independent patterns of light-regulated gene expression suggests that coordinate clock- and light-control can be disadvantageous in some circumstances. For example, although the clock carries phase information about the photocycle, it may not be able to carry information about day length and sunlight intensity, and some photoprotective functions might be better linked to acute light activation so that they are delivered only when needed. Such a case might be made for ultraviolet-induced melanogenesis in human skin. In contrast, it is suspected that many genes controlled by light and the clock contribute to processes that require both daily anticipation of changes in light and light responsiveness (Wijnen, 2006).

    A survey of published expression studies for the selection of light-regulated genes indicates that many of them are prominently expressed in the adult compound eyes (trpl, CdsA, Pkc53E, dlg1, Slob, CG17352, CG5798, CG7077, CdsA, dlg1, Slob, and trpl). Indeed, comparative transcript profiling studies of wild-type and eya2 mutant flies predict expression in the adult compound eyes for 22 of the 27 light-dependent transcripts (Wijnen, 2006).

    Two of the confirmed light-regulated transcripts (trpl and CdsA) encode known regulators of phototransduction. Daily oscillations in the transcript levels have been observed for trpl, which encodes a light-activated calcium channel. Although some effects on light-activated conductance have been observed in a trpl null mutant, the major light-dependent cation channel in Drosophila appears to be encoded by its homolog trp (transient receptor potential). Instead, the TRPL protein may have a specific function in phototransduction during extended illuminations and for adaptation of the light response to dim background light. The effect of TRPL on long-term adaptation is thought to be mediated via light-dependent subcellular translocation of TRPL protein, resulting in a preferred localization at the photoreceptor membranes in the dark and in the cell-bodies in the light. Experiments in the blowfly Calliphora vicina indicate that this translocation does not require regulation at the transcript level, but it is possible that the daily evening peaks of the trpl transcript in Drosophila facilitate efficient accumulation of TRPL protein at the rhabdomeres around dusk. Daily fluctuations are also exhibited by the transcript for CdsA (CDP diglyceride synthetase). The CDSA protein is localized to photoreceptor neurons and catalyzes the synthesis of CDP-diacyl glycerol from phosphatidic acid and CTP071. This enzymatic function helps generate the signaling compound phosphatidyl inositol 4,5-bisphosphate, which is consumed during phototransduction by the phospholipase C NORPA. Studies of CdsA loss-of-function and gain-of-function mutants indicate that by controlling availability of phosphatidyl inositol 4,5-bisphosphate, CDSA expression levels affect the gain of the phototransduction response. Periodic variation of CdsA expression under influence of the environmental photocycle could, therefore, be hypothesized to promote daily variations in visual sensitivity (Wijnen, 2006).

    Two other light-driven transcripts, dlg1 and Slob, are associated with the regulation of synaptic transmission. The dlg1 (discs large 1) gene has roles in control of cell growth and differentiation as well as synaptic function. DLG1 spatial expression pattern includes synaptic sites in the adult brain and the outer membrane of photoreceptors, where it localizes Sh (Shaker) potassium channels (Wijnen, 2006).

    Slob is negatively regulated by light in a clock-independent manner in addition to being one of the most robustly oscillating circadian transcripts in the adult head. The clock-dependent and light-dependent fluctuations that were uncovered for the Slob transcript are reflected in the SLOB protein levels observed in photoreceptor cells and whole heads. A number of findings point to a possible role for SLOB in mediating overt behavioral rhythms. SLOB protein is thought to bind the SLO and EAG potassium channels, and can directly enhance SLO activity, as well as mediate the inhibitory effect of 14-3-3ζ on SLO. slo mutants have altered potassium channel currents and reported defects in flight, male courtship, and circadian locomotor behavior, whereas mutations of eag display hyperactivity, and affect potassium currents and courtship behavior (Wijnen, 2006).

    As mentioned above, circadian rhythms in adult Drosophila can be entrained to a LD cycle via either opsin-mediated photoreception in the light-sensing organs (compound eyes, ocelli, and eyelets) or cell-autonomous activation of the circadian blue-light photoreceptor CRY. Interestingly, the contribution of visual photo-transduction to circadian photo-entrainment is apparently restricted to a few pacemaker neurons in the brain, a situation reminiscent of photo-entrainment of the clock circuits in the mammalian brain via the retina and the retino-hypothalamic tract. In contrast, Drosophila CRY contributes to photo-entrainment in many more clock-bearing tissues, including the visual organs. CRY mediates the light-dependent degradation of TIM, which in turn affects CLK/CYC transcriptional activity in a manner that depends on the phase of the circadian cycle (Wijnen, 2006).

    The light-driven transcript responses identified in this study resemble circadian responses in amplitude and duration in the context of a photocycle, and are found for a number of genes with a verified circadian expression profile. It was, therefore, asked whether these light-driven transcript responses depend on the same light sensors as the circadian system. For the most part light-driven regulation was found not to require CRY. Given TIM's status as a target for CRY-mediated light responses, it is perhaps not surprising that light-driven expression responses that do not require TIM function also persist in the absence of CRY. There is one interesting exception to this rule: The light-mediated repression of the Slob transcript apparently requires CRY, but not TIM. If this observation indeed represents a previously unappreciated function for CRY, it may share this role with the phospholipase C enzyme NORPA, since norpA mutants similarly affect the Slob transcript (Wijnen, 2006).

    In contrast with CRY, it was found that NORPA phototransduction mediates many if not all of the other clock-independent light responses identified in this study. Based on the overlapping expression of both NORPA and its target transcripts in the adult compound eyes and NORPA's well-documented role in phototransduction, the simplest interpretation of these observations would be that light-driven expression responses are mediated by visual phototransduction. Nevertheless, NORPA is known to be expressed outside of the visual organs, and it has been reported to affect functions unrelated to phototransduction, such as olfaction and temperature-controlled clock gene oscillations. Additionally, norpA loss-of-function mutants show a number of defects in circadian locomotor behavior. Their activity profiles reveal an advanced evening activity peak under LD conditions and a shortened intrinsic period length under DD conditions, and they are slow to adjust their behavior to shifting cycles of light and dark. One possible interpretation of these observations is that NORPA plays a role in seasonal photoperiodic control of locomotor behavior. The norpA mutant phenotype partially mimics the effect of a shortened photoperiod, which also leads to advanced evening activity peaks and shortened period lengths. Recent studies provide further evidence connecting norpA to seasonal control of daily locomotor activity patterns. norpA mutants show abnormally high levels of splicing in the 3' untranslated region of per mRNA. Increased splicing of per transcripts at this site has been shown to contribute to the advanced accumulation of PER protein and the advanced timing of evening locomotor activity that is observed for shorter photoperiods and lower temperatures. Thus, NORPA's effect on splicing of per may be an important determinant of the 'short day' locomotor behavior phenotype of norpA mutants. The sustained photic expression responses that are identified here may reflect yet another mechanism for flies to translate a seasonal environmental signal (photoperiod) into a set of molecular signals. Photoperiodic control of transcripts associated with functions in visual sensitivity (trpl and CdsA) and synaptic transmission (Slob and dlg1) may be relevant to adaptive responses in the visual system and the brain. NORPA's involvement in both regulating per splicing and mediating photoresponses at the transcript level raises questions as to if and how these two molecular functions are connected. One possibility is that both reflect NORPA-dependent selective regulation of mRNA stability that takes place in the compound eyes (and perhaps also the brain). Whether or not NORPA's function in circadian locomotor behavior involves some of the light-dependent expression responses that have been identified could be examined by targeted misexpression studies. The subset of transcripts that have been independently confirmed to exhibit both NORPA-dependent light responses and strong clock-dependent circadian regulation might be particularly relevant to these experiments (Wijnen, 2006).

    This paper has reported a new strategy for analyzing oscillatory patterns in microarrray data that allowed answer general questions about oscillatory gene systems in the fly head. By applying this strategy to 17 d of data, it was conclusively demonstrated that there are more than a hundred circadian transcript oscillations in the fly head. Additionally, in a search for rhythmic gene activity over a wide range of periods (from 12 to 48 h), it was established that 24-h periodicity constitutes the only broad program of transcriptional oscillation. It was further found that the tim-dependent clock is the sole transcriptional circadian clock in Drosophila. Thus, the fly appears to differ from cyanobacteria, protists, plants, and fungi, which are thought to possess multiple circadian clocks. Lastly, a novel, light-regulated system of gene regulation was found in Drosophila that is largely dependent on norpA-mediated phototransduction. This system regulates about the same number of genes as the clock, including a number of circadian genes. This study defines three types of transcripts that oscillate in wild-type flies: those from purely clock-regulated genes, those that are purely photocycle-regulated, and those expressed by genes that respond to both inputs (Wijnen, 2006).

    Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    Clock (Clk) is a master transcriptional regulator of the circadian clock in Drosophila. To identify Clk direct target genes and address circadian transcriptional regulation in Drosophila, chromatin immunoprecipitation (ChIP) tiling array assays (ChIP-chip) were performed with a number of circadian proteins. Clk binding cycles on at least 800 sites with maximal binding in the early night. The Clk partner protein Cycle (Cyc) is on most of these sites. The Clk/Cyc heterodimer is joined 4-6 h later by the transcriptional repressor Period (Per), indicating that the majority of Clk targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. Clk has specific targets in different tissues, implying that important Clk partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation (Abruzzi, 2011).

    Previous circadian models in Drosophila suggested a transcriptional cascade in which Clk directly controls a limited number of genes, including core clock genes, which then drive the oscillating expression of many different output genes. The results of this study indicate that Clk directly regulates not only the five core clock genes (i.e., pdp1, vri, tim, per, and cwo), but also many output genes, including ~60 additional transcription factors. Some of these are tissue-specific; e.g., lim1 and crp. In addition, Clk direct target gene regulation may impact timekeeping in yet unforeseen ways. For example, Clk, Per, and Cyc bind to three of the four known circadian kinases; i.e., dbt, nmo, and sgg. Although none of these mRNAs have been previously reported to cycle, both dbt and sgg have cycling Pol II, and dbt shows weak oscillations via qRT-PCR. nmo expression is enriched in circadian neurons and has been shown to cycle in l-LNvs. The data, taken together, indicate that this simple ChIP-chip strategy has uncovered important relationships and suggest that the transcriptional regulation of some of these new target genes warrants further investigation (Abruzzi, 2011).

    Most of the 1500 Clk direct target genes are also bound by two other circadian transcription factors: Cyc and Per. Because a previous study showed that there is a progressive, ordered recruitment of Clk, Pol II, and Per on per and tim (Menet, 2010), the same basic mechanism is conserved on most Clk direct targets. Clk binding increases in late morning and gives rise to an increase in Pol II signal where detectable (ZT6-ZT10). Clk binding is maximal in the early night (ZT14), and both Clk binding and Pol II occupancy decrease rapidly after the repressor Per is bound to chromatin 4-6 h later, at ZT18. Interestingly, Per binds to nearly all Clk direct targets at the identical Clk/Cyc locations, suggesting Per recruitment via protein-protein interactions (Abruzzi, 2011).

    The identical binding sites for Clk, Cyc, and Per suggest that binding is not background binding or 'sterile' binding with no functional consequence. This is because three components of the circadian transcription machinery are present with proper temporal regulation. Pol II cycling on ~30% of cycling Clk targets further supports this interpretation. The Pol II signal is maximal from mid- to late morning (ZT6-ZT10), which slightly anticipates the maximal transcription times of core circadian genes like per and tim. Most Pol II signals are promoter-proximal and may reflect poised Pol II complexes often found on genes that respond quickly to environmental stimuli (Abruzzi, 2011).

    To address RNA cycling, ten direct target genes with Pol II cycling were examined. Eight of these genes show oscillating mRNA with >1.5-fold amplitude, suggesting that oscillating Pol II indeed reflects cycling transcription. Because this assay may underestimate cycling transcription due to tissue heterogeneity (i.e., masking by noncycling gene expression elsewhere in the head), ~30% is a minimal estimate of Clk direct targets with cyclical mRNA (Abruzzi, 2011).

    Interestingly, previous microarray studies did not detect many of these genes. One possibility is that the alternative start sites that characterize 55% of Clk direct targets are not detectable on microarrays; e.g., moe and mnt. However, several mRNAs that cycle robustly by qRT-PCR are not isoform-specific and are also not consistently identified in microarray studies. A second possibility is that the relatively low cycling amplitude of many target genes -- twofold or less, compared with the much greater amplitudes of core clock genes such as tim, per, and pdp1, assayed in parallel -- may be more difficult to detect on microarrays (Abruzzi, 2011).

    Low-amplitude cycling may result from relatively stable mRNA, which will dampen the amplitude of cycling transcription. Alternatively, or in addition, low-amplitude cycling may reflect cycling in one head location and noncycling elsewhere within the head, which will dampen head RNA cycling amplitude. This is likely for many eye-specific Clk targets, which appear expressed elsewhere in the head via a Clk-independent mechanism (Abruzzi, 2011).

    A third and arguably more interesting explanation for low-amplitude cycling is that Clk binds on promoters with other transcription factors within single tissues. These could include chromatin modifiers and would function together with Clk in a gene- and tissue-specific fashion. For example, a gene could be constitutively expressed at a basal level by one transcription factor, with temporal Clk binding causing a modest boost to transcription. For example, gol is a Clk target exclusively in the eye, and gol mRNA cycles with a fourfold amplitude. Rather than cycling from 'OFF' (no or very low mRNA levels) to 'ON,' however, gol mRNA levels are quite high even at the trough or lowest time points. This suggests that gol cycles from a substantial basal level in the late night and daytime to an even higher level of expression in the evening and early night. Since mRNA levels decrease by >10-fold in GMR-hid flies, trough transcription levels are not likely from other tissues. Therefore, Clk probably acts on gol and other targets not as an 'ON/OFF switch,' but rather in concert with other factors to boost a basal level of gene expression at a particular time of day and cause low-amplitude cycling within a single tissue (Abruzzi, 2011).

    The large number of Clk target genes in fly heads is explained in part by tissue-specific Clk binding. Transcription assays that measure the cycling of mRNA and Pol II binding in one head tissue can be masked by noncycling expression in another. The ChIP assays, in contrast, are not plagued with the same problem. They can identify a gene bound by the cycling circadian transcription machinery even if the same gene is constitutively expressed elsewhere in the head. Surprisingly 44% of Clk direct targets were no longer detected when eyes were ablated with GMR-hid. Because many of these mRNAs are not particularly eye-enriched, it is inferred that their genes are constitutively expressed under the control of other transcription factors elsewhere in the head (Abruzzi, 2011).

    The large number of target genes is also explained by the efficiency and sensitivity of the ChIP assay. It is inferred that it can detect Clk binding from a relatively low number of cells within the fly head. Lim1 is one example and is expressed predominantly in a subset of circadian neurons (l-LNvs; enriched more than four times relative to head). Preliminary cell-specific Clk ChIP-chip experiments from LNvs confirm that lim1 is an enriched Clk direct target in these cells, suggesting that this is the source of a large fraction of the binding signal in the head ChIP-chip experiments. Experiments are under way to more clearly define circadian neuron-specific Clk-binding patterns (Abruzzi, 2011).

    This tissue specificity also suggests the existence of factors and/or chromatin modifications that help regulate Clk-mediated gene expression. They could enable Clk binding to specific genes in one tissue or inhibit binding in another tissue. These tissue-specific factors are strongly indicated by the pdp1 and lk6 Clk-binding patterns, which change so strikingly and specifically in GMR-hid. Although not unprecedented, tissue-specific factors that enable or inhibit specific DNA-binding locations are intriguing and warrant further investigation and identification (Abruzzi, 2011).

    Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods

    Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit (Nitabach, 2006).

    Understanding the mechanisms for synchronizing multiple independent neural oscillators in circadian circuits is a key issue in circadian biology. This study provides evidence that the excitability state of the LNV subset of clock neurons plays a critical role in coordinating multiple oscillators in the fly brain. When the LNVs are made electrically hyperexcitable by genetically targeted expression of a voltage-gated sodium channel cloned from a halophilic bacterium, NaChBac, transgenic flies exhibit complex free-running behavioral rhythms with multiple periods along with desynchronization of clock protein cycling throughout the pacemaker circuit and disrupted cycling of PDF levels in the dorsomedial terminal projections of the small LNVs (sLNVs) (Nitabach, 2006).

    Anti-PDF immunofluorescence was observed in the dorsomedial terminals of the sLNVs in control flies. However, anti-PDF immunofluorescence in the dorsomedial terminals of the sLNVs of experimental flies expressing NaChBac in the LNVs is maintained at constitutively higher levels. This result is unexpected if PDF release at nerve terminals is the only cellular function influenced by alterations in cellular electrical excitability. Although there remains a formal possibility that NaChBac expression does not cause increased electrical excitability in pacemaker neurons, this is considered highly unlikely because of the robust and opposite effects of NaChBac expression compared with open-rectifier potassium-channel expression on behavior, reciprocal rescue of behavior by coexpression, clock oscillation, and direct electrophysiological recordings of muscle and photoreceptor neurons expressing NaChBac. Furthermore, hyperpolarization of LNv membrane potential after the targeted expression of open-rectifier potassium channels to these cells causes accumulations of PDF in the cell bodies of the LNVs, providing further evidence that membrane potential regulates the rates of synthesis and/or trafficking of PDF as well as release. These results together suggest that regulated electrical excitability of the sLNV plasma membrane underlies cycling PDF levels in the dorsomedial terminals, and that rendering the sLNVs hyperexcitable through NaChBac expression disrupts one or more of the cellular processes (synthesis, trafficking, or release) that determine PDF accumulation in the dorsomedial terminals. It remains unclear whether changes in neuronal membrane excitability directly influences PDF accumulation or whether this is caused by indirect effects via the molecular clock, because PDF accumulation appears to be restricted to pacemaker neurons (Nitabach, 2006).

    The behavioral and circuit alterations caused by NaChBac expression in the LNVs may be attributable in part to an altered pattern of PDF release or a yet-unidentified neurotransmitter released by the LNVs, or to complex circuit properties of the pacemaker circuit. Regulated membrane electrical excitability of other neuropeptide-secreting neurons of the insect nervous system is known to be essential for appropriate control of the temporal patterns of peptide release. PDF may act as an intrinsic coupling signal within the circadian clock circuit that synchronizes multiple oscillators that otherwise free-run independently. This interpretation is consistent with a synchronizing role for PDF proposed on the basis of gradual phase dispersal within the sLNV subgroup of Pdf01-null mutant flies in constant darkness. In addition, the results are consistent with the idea that temporally regulated PDF release by the LNVs synchronizes the circuit, and are inconsistent with the hypothesis that PDF plays a purely permissive role (Nitabach, 2006).

    Recent electrophysiological evidence in another insect suggests a mechanism for PDF- and GABA-mediated synchronization of multiple oscillators of pacemaker circuits (Schneider, 2005). Extracellular multiunit recordings of the candidate circadian neurons in excised preparations of the cockroach accessory medulla exhibit ultradian oscillatory action potential firing that is synchronized by local application of pressure ejected PDF and GABA through glass micropipettes or bath applied GABA (Schneider, 2005). Similarly, circadian neurons in the fly may fire in PDF-regulated assemblies. Although there is as yet insufficient electrophysiological evidence to allow direct comparison of the results in Drosophila with this recent finding in the cockroach, this raises the interesting possibility that NaChBac expression in the Drosophila LNVs may result in desynchronized firing of pacemaker neurons throughout the circuit, starting with the LNVs themselves. This would be consistent with the biophysical property of NaChBac of low-threshold voltage activation. Interestingly, similar mechanisms for oscillator coupling at the circuit level may also be important in mammals. GABA also modulates phase coupling between the ventral and dorsal oscillators in brain slices prepared from the rat SCN (Nitabach, 2006).

    The behavioral results confirm that the Drosophila circadian control circuit contains multiple clocks capable of oscillating independently and capable of independently controlling the pattern, but not the amount, of locomotor activity. They further indicate that properly regulated electrical excitability of the LNVs (and perhaps of particular importance, the LNVs) is required to synchronize these multiple clocks throughout the pacemaker neuronal circuit. The synchronization of multiple oscillators appears to be necessary to generate coherent single-period behavioral rhythms (Nitabach, 2006).

    The reciprocal suppression by NaChBac of the arrhythmicity induced by Kir2.1, and by Kir2.1 of the complex rhythmicity induced by NaChBac, strongly supports the interpretation that NaChBac and Kir2.1 have opposite effects on the electrical excitability of the LNVs, with Kir2.1 decreasing excitability and NaChBac increasing excitability. When expressed individually in the LNVs, K+ channels and Na+ channels have opposite behavioral effects: hyperpolarizing K+-channel expression results in arrhythmic behavior, whereas depolarizing Na+-channel expression results in hyper-rhythmic behavior. The coexpression of these two channel types together results in functional reciprocal compensation, yielding nearly normal behavior (Nitabach, 2006).

    In a previous studies, LNV membrane potential was manipulated to be hypoexcitable through the targeted expression of modified open-rectifier or inward-rectifier potassium channels (Nitabach, 2002). This caused behavioral arrhythmicity and cell autonomous dampening of the free-running molecular clock in LNV neurons in constant darkness, along with no discernable changes in the cycling of the molecular clock in downstream pacemaker neuronal subgroups at circadian day 2. Those results are consistent with the findings that desynchrony of downstream cell groups does not become apparent in pdf01-null mutant flies until 2 d in constant darkness. In the present study, LNV hyperexcitability induces trans-synaptic changes in the free-running temporal pattern of clock protein accumulation in the dorsal neuron subgroups DN1 and DN2. Thus, the DN neuronal groups appear to be functionally downstream of the LNV neurons in the pacemaker circuit. In negative control flies, the DN1s oscillate in phase with the sLNVs and LNDs, maintaining synchrony on both days 2 and 5 after release into constant darkness from a diurnal 12 h light/dark entraining regime, whereas the DN2s gradually advance from synchrony in 12 h light/dark to a 12 h phase difference by circadian day 5. The DN2s of control flies exhibit peak PDP1 accumulation at CT14 on day 2 in constant darkness and at CT10-CT14 on day 5 in constant darkness. This gradual shift of DN2 PDP1 oscillation from synchrony with the other cell groups in LD to a 12 h phase advance after 5 d in constant darkness is consistent with observations of DN2 PER cycling. In pdf>NaChBac1 flies expressing NaChBac in the LNVs, the DN1s exhibit a PDP1 molecular peak 8 h earlier than control flies on day 2 in constant darkness, and by circadian day 5 this peak has significantly damped and an additional significant peak has appeared at CT22. The DN2s of pdf>NaChBac1 flies exhibit a peak of PDP1 accumulation at CT14 on day 2 in constant darkness, in phase with control flies; by day 5 in constant darkness they peak at CT6, 4–8 h earlier than in controls. This phase shift suggests that the DN2 molecular oscillator of pdf>NaChBac1 flies is running faster than that of control flies. These differences in the temporal pattern of PDP1 accumulation in the DN1s and DN2s induced by NaChBac expression in the LNVs indicate that properly regulated electrical activity is required for normal patterns of molecular oscillation in these dorsal cell groups (Nitabach, 2006).

    The DN2s may be capable of independently driving behavioral outputs, and are possibly the cellular substrate for the ~22 h short-period component of the complex behavioral rhythmicity exhibited by flies expressing NaChBac in the LNVs. The cellular substrates for the ~25.5 h long-period component are likely to reside in other cells within the circuit. In control pdf>TM3 flies, robust free-running PER oscillation is observed in the sLNV,LND, and DN1 neurons after 5 d in constant darkness, with trough levels of PER in the second half of subjective day. The differences in the spatiotemporal pattern of PER accumulation induced by NaCh-Bac expression in the LNVs confirm, as indicated by the effects on PDP1 accumulation, that hyperexcitation of electrical activity in the LNVs causes desynchronization of the coupling and phase of molecular oscillation in dorsal clock neurons (Nitabach, 2006).

    Multiple oscillators are distributed throughout the pacemaker circuit in Drosophila. The present study confirms and extends evidence for multiple oscillators in the pacemaker circuit in Drosophila. The independent oscillators driving the multiple period components of the behavioral rhythms that were observed do not appear to correspond directly to the 'morning' and 'evening' oscillators, which have been localized to the LNVs and LNDs, respectively. The current results emphasize that the activity of the LNVs controls the synchronization of independent oscillators throughout the pacemaker circuit. The normal pattern of DN1 and DN2 clock oscillation requires properly regulated electrical excitability of the LNVs. Further, the results suggest that the DN2s, and at least some other cell groups, possess independent output pathways to the downstream locomotor circuitry (Nitabach, 2006).

    This study introduces a novel method for inducing electrical hyperexcitability in neurons of interest by the expression of the low-threshold voltage-gated sodium channel NaChBac. This method is likely to be useful for the analysis of other neural circuits. In another study (Luan, 2006), the utility of the NaChBac channel for enhancing excitability in other neurons has also been demonstrated. Targeted expression of ion channel subunits in vivo provides a powerful means for precisely perturbing neuronal membrane excitability to probe the role of activity on neuronal development and function. Initial methods to exogenously regulate electrical excitability in neurons in vivo have used potassium channel expression to electrically silence neurons. Exogenous manipulation of electrical excitability within specific Drosophila neurons can be combined with finer parsing of neural circuits using GAL80 and other genetic approaches (Nitabach, 2006).

    This study has shown that aberrations of electrical excitability in Drosophila neurons, either hyperexcitability induced by NaChBac or hypoexcitability induced by Kir2.1, can be rescued by coexpression of an ion channel with an opposite effect on excitability. This provides reason to believe that such an approach to neurological disorders of aberrant electrical activity such as epilepsy might indeed be feasible (Nitabach, 2006).

    Functional analysis of circadian pacemaker neurons in Drosophila melanogaster

    The molecular mechanisms of circadian rhythms are well known, but how multiple clocks within one organism generate a structured rhythmic output remains a mystery. Many animals show bimodal activity rhythms with morning (M) and evening (E) activity bouts. One long-standing model assumes that two mutually coupled oscillators underlie these bouts and show different sensitivities to light. Three groups of lateral neurons (LN) and three groups of dorsal neurons govern behavioral rhythmicity of Drosophila. Recent data suggest that two groups of the LN (the ventral subset of the small LN cells and the dorsal subset of LN cells) are plausible candidates for the M and E oscillator, respectively. Evidence is provided that these neuronal groups respond differently to light and can be completely desynchronized from one another by constant light, leading to two activity components that free-run with different periods. As expected, a long-period component starts from the E activity bout. However, a short-period component originates not exclusively from the morning peak but more prominently from the evening peak. This reveals an interesting deviation from the original Pittendrigh and Daan (1976) model and suggests that a subgroup of the ventral subset of the small LN acts as 'main' oscillator controlling M and E activity bouts in Drosophila (Rieger, 2006).

    Daily biological rhythms are governed by inherent timekeeping mechanisms, called circadian clocks. Such clocks reside in discrete sites of the brain and consist of multiple autonomous single-cell oscillators. Within each neuron, interacting transcriptional and translational molecular feedback loops as well as ionic signaling pathways constitute the oscillatory mechanism of the clock. It is not understood how individual pacemaker neurons interact to drive behavioral rhythmicity. The long-standing model of Pittendrigh and Daan (1976) assumes that the clock consists of two groups of oscillators with different responsiveness to light, one governing the morning (M) and the other the evening (E) activity of the animal. Typical M and E activity bouts are present in animals ranging from insects to mammals and suggest that the two-oscillatory model is generally valid. It has been shown that M and E bouts could be eliminated or reinstated by manipulating different circadian pacemaker neurons in Drosophila. This work has suggested that the ventral (LNv) and dorsal (LNd) subsets of the lateral neurons are the neuronal substrates for the M and E oscillators. It is not known whether these two oscillators respond differently to light (Rieger, 2006).

    The particular power of the two-oscillator model is that it explains observed adaptations to seasonal changes in day length. The model predicts that the M oscillator will shorten and the E oscillator will lengthen its period when exposed to extended constant light (LL). As a consequence, the M activity occurs earlier and the E activity occurs later in long summer days, helping day-active animals avoid the midday heat. The model also predicts that the M oscillator will free-run with short period and the E oscillator with long period when animals are placed in constant light. However, such internal desynchronization between oscillators does not occur, because high-intensity constant light usually results in arrhythmicity. In Drosophila, the clock protein Timeless (TIM) is permanently degraded during light-induced interaction with Cryptochrome (CRY), leading finally to the arrest of the clock. Without functional CRY, this does not happen. Indeed, internal desynchronization into two free-running components (one with a short period and the other with a long period) has been described for cryb mutants under constant-light conditions. The present study aims to analyze the molecular state of all clock gene-expressing neurons during behavioral rhythm dissociation to test the Pittendrigh–Daan model and refine the neuronal substrates of the E and M oscillators (Rieger, 2006).

    This study supports the notion that the activity rhythm of Drosophila is controlled by at least two sets of neuronal oscillators. Furthermore, the definition of these neuronal substrates of both oscillators were refined more precisely than previously. As proposed by Pittendrigh and Daan (1976), the two oscillators show different responses to light: one is accelerated and the other decelerated by constant light. However, a deviation from the original model was observed. In contrast to previous observations, the current results suggest that the PDF-positive s-LNv cells control not only the M but also the E activity bout. Therefore, the discussion should perhaps not focus of a 'morning' oscillator but rather of an M–E or 'main' oscillator (to keep the 'M'), for the following reasons. The PDF-positive s-LNv cells are essential for maintaining activity rhythms after several days under constant conditions, and electrical silencing of the LNv cells severely impairs free-running rhythms. In the present study, the PDF-positive s-LNv cells appear to dominate the rhythms in those flies that did couple E and M components after the first crossing-over on day 11 in LL, because such flies free-ran with short period (Rieger, 2006).

    The hypothesis that the PDF-positive LNv cells control not only the M activity but also partly the E activity can also explain other findings. The E activity bout is always the most prominent peak, which persists under constant-dark conditions, whereas the M activity bout is much reduced under such conditions and may even disappear. Thus, mainly the E component constitutes the free-running rhythm, and it seems implausible that the neurons responsible for rhythmicity under these conditions should have no impact on the E component. Indeed, it has been found that the s-LNv show the most robust cycling after extended time under constant conditions. Furthermore, another study emphasizes the importance of the s-LNv cells for the timing of activity peaks under constant conditions (Rieger, 2006 and references therein).

    Despite their dominance, the PDF-positive s-LNv cells depend on functional LNd and DN cells to provoke a normal E activity bout under light-dark conditions. Flies with the clock gene PER present only in PDF-positive LNv cells have a prominent M activity bout but lack the E activity bout. It is unclear whether this is attributable to the E activity fusing with the M activity or whether the E activity is suppressed, but these findings show that the output from the PDF cells requires PER in the LNd and DN cells to manifest wild-type activity patterns (Rieger, 2006).

    It was found that the PDF-negative 5th s-LNv cell cycles in-phase with the LNd cells under LL and thus may contribute to the E component. Notably, the PDF-negative 5th s-LNv cell shows high-amplitude cycling. Although this is not proof of the involvement of this cell, it suggests that it is an important circadian pacemaker neuron. Little is known about this cell because it could not be distinguished from the other lateral neurons in the former studies in which single-labeled clock protein staining was performed, but the PDF-negative 5th s-LNv cell is the only clock cell beside the PDF-positive s-LNv cells that appears to work from the first larval instar onward. Thus, it might have the same strong impact on the activity rhythm that has been revealed for the PDF-positive s-LNv cells. More work is necessary to reveal the role of the PDF-negative s-LNv cell in more detail (Rieger, 2006).

    Additional studies are also necessary to fully reveal the function of the DN cells. The current results suggest that the DN1 and the DN3 cells may contain different subclusters. Indeed, the DN1 cells develop at different times and appear to have distinct projection patterns. It is very likely that some DN1 cells contribute to the M oscillator whereas others supply the E oscillator. Again, there are data that support this hypothesis: if the lateral neurons (s-LNv, l-LNv, and LNd) are absent as a result of mutation or genetic ablation but the dorsal neurons (DN1, DN2, and DN3) are left intact, morning and evening activity bouts are still present under LD conditions, although with reduced amplitude and changed phase. The DN2 cells might play a special role for bimodal activity patterns because, in wild-type flies, they cycle 12 h out-of-phase with the s-LNv and LNd cells under DD conditions. The present study indicates that this is not the case in cryb flies under LL conditions, because the DN2 cells were in-phase with all other neurons on the first day in LL. The same applies for wild-type flies under LD conditions. It has been shown that the DN2 are indeed pacemaker neurons that cycle independently of the s-LNv cells. However, despite their autonomous function, the DN2 cells did not visibly contribute to the activity patterns of the flies under constant darkness. This suggests a minor role of the DN2 cells in the control of the activity rhythm, but the possiblity cannot be exclude that the DN2, together with the other DN groups, may contribute to morning and evening activity bouts under certain conditions (Rieger, 2006).

    The blue-light photopigment cryptochrome is regarded as the main photoreceptor of the fruit flies' circadian clock. This study shows that the compound eyes are responsible for period shortening and period lengthening of the molecular oscillations in different subsets of pacemaker neurons (the M and E oscillators) under LL. Their special role may lie in the adaptation of the clock to seasonal changes. This is in line with previous findings showing that the compound eyes are necessary for the adequate timing of M and E activity bouts in long summer days and short winter days. Cryptochrome, conversely, appears to lengthen the period in all clock neurons as can be deduced from the periods of the wild-type flies that showed internal desynchronization under 'moonlight LL.' In such flies, the periods of both components were clearly longer than those of internally desynchronized cryb flies (Rieger, 2006).

    The internal desynchronization of activity into long- and short-period components described in this study is reminiscent of previous results for Drosophila mutants with primarily reduced optic lobes or ectopic expression of PDF. Both of these fly strains have ectopic PDF-containing nerve fibers in the dorsal brain that might lead to elevated and/or nonrhythmic secretion of PDF in this brain area and may disturb normal communication between the pacemaker cells. It is unknown whether such a perturbed communication results in internal desynchronization between the s-LNv and the 5th s-LNv and extra LNd as observed in the present study. Dual-oscillator systems have been also described for mammals, but in no case they could be traced to the level of single neurons. Like the circadian pacemaker center of flies, the mammalian pacemaker center, the suprachiasmatic nucleus (SCN), contains a heterogeneous neuronal population. A recent study has shown that internal desynchronization of motor activity into short and long periods similar to the one shown in this study can be provoked in rats by special light schedules. As in Drosophila, both components reflect the separate activities of two oscillators in anatomically defined subdivisions of the SCN. Furthermore, there is some evidence to suggest that the SCN is composed of two oscillating M and E components. These results underline the universality of dual-oscillator systems (Rieger, 2006).

    Other studies strongly implicate the PDF-expressing LNv and the LNd cells as the respective neuronal loci for the morning and evening activity bouts. Despite the near 12 h phase difference between the morning and evening locomotor peaks under LD, no obvious molecular phase differences between these pacemakers have been observed that would explain them. Work in mammals suggests that the relationship between molecular phase and locomotion is complex. For example, nocturnal and diurnal rodents show the same phases of PER oscillations. Furthermore, different rat strains that displayed unimodal or multimodal activity patterns, respectively, all exhibited the same unimodal rhythm in melatonin synthesis. Individual Nile grass rats changed their activity patterns from unimodal–diurnal to bimodal–nocturnal after introducing a running wheel. Despite this dramatic effect on the activity patterns, the wheel had little effect on the circadian pacemaker, and the spatial and temporal patterns of c-Fos expression in the SCN remained similar. All of these data indicate that the relationship between molecular and behavioral phase is not straightforward. Clearly, a multitude of phase relationships between the molecular rhythm and behavior are possible. Brain regions outside the pacemaker center may be responsible for these different phases as was shown recently for mammals. It appears that the same is true within the circadian system of the fly. The present data show that, during the internally synchronized state, the trough in PER level of all neurons correlates with the main activity bout (the E peak). No second trough appears to correlate with the M peak. However, a second small peak can be seen at closer inspection of the PDF immunoreactivity in the terminals of the s-LNv. This suggests that the unimodal rhythm in clock protein cycling might be converted into a bimodal output already within the neurons (Rieger, 2006).

    During the state of behavioral desynchronization under LL conditions, an internal desynchronization was observed simultaneously in PER oscillations among subsets of pacemaker neurons. One interpretation of these data is that constant light causes internal desynchronization between these pacemaker neurons that then in turn drive the behavioral outputs. However, it must be acknowledged that this is only a correlation, and, although the hypothesis is favored that the split molecular rhythms are driving the split locomotor rhythms, it is possible that they are merely tracking or entraining to a split rhythm driven by other pacemakers. For example, the split rhythms might be driven by subsets of dorsal neurons. The hypothesis is preferred that the split behavioral rhythms were driven by the desynchronized PDF-positive LNv and the 5th s-LNv/extra LNd cells for two reasons. First, accumulating evidence points to the lateral neurons (LNv and LNd cells) as major pacemaker cells, whereas the dorsal neurons (the DN1, DN2, and DN3 cells) are not sufficient for locomotor rhythms under constant darkness. Second, in rodents, a similar behavioral desynchronization was correlated with a dissociation of clock gene expression between ventrolateral and dorsomedial subdivisions of the SCN. The established role of this brain center as the circadian clock has led to the uncontroversial conclusion that the split molecular oscillations drive the split behavioral oscillations. It is suggested that the same phenomenon is occurring in main (i.e., small LNv cells) and evening (i.e., 5th s-LNv and extra LNd cells) neuronal oscillators in Drosophila (Rieger, 2006).

    The Drosophila circadian network is a seasonal timer

    Work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. This study manipulated separately the circadian photoentrainment pathway within E- and M-cells and shows that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season (Stoleru, 2007).

    Two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), have been connected to morning and evening locomotor activity, respectively (Grima, 2004; Stoleru, 2004). Interactions between the two oscillator populations were studied by selectively overexpressing sgg to speed up the clock in only one cell population or the other (Stoleru, 2005). This study has found that sgg overexpression gives rise to LL rhythmicity, which led to a search for the cellular substrates of entrainment. The rhythmicity is predominantly due to sgg overexpression in E-cells, which suggested that this subset of the clock network is particularly important in the light and that Sgg affects the biochemical pathway through which light impacts clock molecules and adjusts phase to the correct time of day. Indeed, strong evidence is presented that Sgg modulates Cry function, which affects in turn the core clock proteins Per and Tim. The separate manipulation of the Sgg/Cry pathway within E- and M-cells also reveals that the E-clocks drive the behavioral rhythm in light, with prominent Per oscillations of nuclear localization. This light dependence of E-cells contrasts with M-cells, which need darkness to cycle autonomously and dominate the activity output pathway. This distinction suggests a simple dual-oscillator model for how the clock adjusts to photoperiod changes, and support for this seasonal model was obtained by examining E- and M-cell cooperation under different photoperiods (Stoleru, 2007).

    The free-running pacemaker and entrainment are two important and increasingly understood aspects of circadian rhythms. In contrast, little information exists about seasonal adjustment, namely, how a constant ~24-hr timekeeper accommodates dramatically different photoperiods. This study shows that the previously defined dual oscillator system in Drosophila, M-cells and E-cells, creates different rhythmic patterns by alternating master clock roles. This understanding emerged from restricting Sgg overexpression to E-cells, which allowed the E-oscillator to function and render flies rhythmic in LL. Sgg probably modulates Cry activity and, when overexpressed, provides sufficient Per and Tim to allow E-oscillator function under constant illumination conditions. The E-clocks therefore manifest free-running properties and function as the master pacemakers in LL, analogous to a previous finding that the M-oscillator is the master in DD (Stoleru, 2005). Nonetheless, these constant conditions, and even the perfect standard LD cycles commonly used in the laboratory, are poor approximations of the changing LD environments found in nature. Circadian oscillators and their entrainment mechanisms have adapted to the dramatic seasonal changes in photoperiod. The previous strategy of using oscillators with different speeds, combined with different photoperiods, has led to a model of alternating control between the M-oscillator and E-oscillator (Stoleru, 2007).

    Sgg appears to attenuate, rather than inactivate, Cry activity in E-cells. This is because the LL period of timSgg/PdfGAL80 (~23.5 hr) is longer than the intrinsic period of Sgg-expressing E-clocks in DD (~21 hr) (Stoleru, 2005). A longer period in light is compatible with attenuated light perception under high light intensity conditions (1600 lx, which renders wild-type flies completely arrhythmic) and the application of Aschoff's rule to insects [Aschoff, 1979; One of the earliest observations in the study of circadian rhythms was that continuous light (LL) lengthens circadian period in most nocturnal animal species. 'Aschoff's Rule' posits that there is a positive log-linear relationship between the LL intensity and period]. As there is also a prominent effect on Cry stability, Sgg may be the regulator previously predicted to bind to the Cry C terminus (Busza, 2004; Dissel, 2004). Although Cry is favored as the major circadian substrate of Sgg, there may be others, e.g., the serotonin receptor. Biochemical support for GSK3 involvement in mammalian rhythms has recently been obtained (Yin, 2006). Since GSK3 is a proposed therapeutic target of lithium, the relationship between Sgg and Cry reported in this study recalls the intriguing relationship between mood disorders, light sensitivity, and circadian rhythms (Stoleru, 2007).

    The cryb genotype markedly affects DD period in some of the rhythmic genotypes described in this study. Although Cry is probably unnecessary for M-cell rhythmicity, this could reflect some redundancy or assay insensitivity. Moreover, the DD period of cryb is slightly shorter than that of wild-type (23.7 versus 24.4), suggesting that 'dark Cry' makes some contribution to pacemaker function in M-cells as well as E-cells. For these reasons, it is suggested that Drosophila Cry is closer to the central pacemaker than previously believed, and therefore closer to the level of importance of its mammalian paralogs in influencing free-running pacemaker activity. Unlike mammalian Cry, however, Drosophila Cry still appears to function predominantly at a posttranslational level. Indeed, the effects of cryb on Sgg overexpression in DD suggest that the proposed effect of Sgg on Tim stability is really an effect of Sgg on Cry followed by an altered Cry-Tim interaction. It is noted that there is a recent proposal (Collins, 2006) that Drosophila Cry, like mammalian Cry, also functions as a transcription factor in peripheral clocks (Stoleru, 2007).

    The importance of E-cells in LL rhythmicity is underscored by the staining results of timSgg/PdfGAL80 brains. Only some E-cells and DN2s manifest robust cycling. It has been suspected that E-cells are important in light because they can rescue the output of arrhythmic M-cells in LD, but not in DD (Stoleru, 2004). Indeed, all of these observations make it attractive to view E-cells as autonomous pacemakers. There is, however, evidence that M-cells may not be completely dispensable. Moreover, a synchronizing or stabilization function is compatible with previous observations under different conditions (Stoleru, 2007).

    In the timSgg/PdfGAL80 genotype, only Per nuclear localization changes were detectable near the end of LL cycle. The nature of the assay makes it hard to conclude that there were no differences in total Per staining intensity, i.e., no oscillations in Per levels, so the unique nature of the Per nuclear localization cycling is a tentative conclusion. The same caveat applies to the absence of Tim oscillations and nuclear staining, i.e., negative results cannot exclude low-amplitude oscillations; it is noted, however, that Tim cytoplasmic sequestration has been previously observed in cryb flies after several days in LL. Furthermore, the circadian nuclear accumulation of Tim has been shown to respond differently than that of Per to changes in photoperiod. Nonetheless, Tim could be shuttling with a predominant steady-state cytoplasmic localization, nuclear Tim could be rapidly degraded to create a low nuclear pool, or both (Stoleru, 2007).

    The importance of E-cells in entrainment is strongly supported by the potent effect of restricted Cry rescue of cryb: E-cell rescue is much more impressive than M-cell rescue. Moreover, the differences between the two rescued phase response curves (PRCs) are striking; E-cell rescue is virtually complete, whereas the M-cell rescue is notably deficient in the delay zone. In addition, flies with Sgg overexpression in E-cells show altered PRCs, whereas flies with Sgg overexpression in M-cells respond normally to light. The results are strikingly different in darkness, as M-cell-restricted expression causes the typical short period determined by Sgg overexpression, whereas E-cell overexpression has no systemic effect (Stoleru, 2007).

    The PRC delay zone is the region impacted most strongly by E-cell Sgg overexpression, indicating that the lights-off early night region is most important to E-cell function and light entrainment. Exposure to light in this interval should mimic long days (summer), which, it is speculated, will delay phase by many hours so that “evening” output of the following day will coincide with the objective evening of the environment. Even the short nights of summer are probably enough time for E-clocks to accumulate sufficient Tim and Per, shuttle them into the nucleus, and reconstitute the rhythmic substrate observed in the Sgg-overexpressing brains in LL. In contrast, M-cells need darkness to cycle robustly. They will become the master clocks and drive the system whenever lights fail to turn on more than 12 hr past lights-off, i.e., during the long nights of winter that mimic the beginning of a DD cycle. Since the intrinsic pacemaker program of M-cells in darkness relies on the changing nature of clock proteins during the night, it is hypothesized that the activity phases under long nights (winter) are locked to lights-off. This suggestion is supported by preliminary data and previous observations showing that per transcription remains locked to lights-off under different entrainment regimes. M-cells are also capable of fully entraining the system in the PRC interval that determines a phase advance (late night). This is consistent with their predicted role in generating an advanced evening output, coincident with the early evenings typical of winter. Otherwise put, long summer days should underlie light primacy as well as long and prominent evening delay zones; both suggest E-cell dominance. Night primacy and M-cells should dominate under winter conditions. This concept endows E- and M-cells with the properties originally envisioned by the Pittendrigh and Daan (1976) dual-oscillator model of entrainment (Stoleru, 2007).

    Moonlight shifts the endogenous clock of Drosophila melanogaster

    The ability to be synchronized by light-dark cycles is a fundamental property of circadian clocks. Although there are indications that circadian clocks are extremely light-sensitive and that they can be set by the low irradiances that occur at dawn and dusk, this has not been shown on the cellular level. This study demonstrates that a subset of Drosophila's pacemaker neurons responds to nocturnal dim light. At a nighttime illumination comparable to quarter-moonlight intensity, the flies increase activity levels and shift their typical morning and evening activity peaks into the night. In parallel, clock protein levels are reduced, and clock protein rhythms shift in opposed direction in subsets of the previously identified morning and evening pacemaker cells. No effect was observed on the peripheral clock in the eye. These results demonstrate that the neurons driving rhythmic behavior are extremely light-sensitive and capable of shifting activity in response to the very low light intensities that regularly occur in nature. This sensitivity may be instrumental in adaptation to different photoperiods. This adaptation depends on retinal input but is independent of cryptochrome (Bachleitner, 2007).

    Nocturnal light provoked an advance of the morning (M) activity and a delay of the evening (E) activity into the night. Simultaneously, the midday trough broadened and the midnight trough diminished, making the flies nocturnal in a cycle of 12 h:12 h. In other words, they switched their temporal niche. Upon transfer to constant conditions, they reverted, with activity in continuous moonlight (MM) always starting from the preceding light phase. A similar switch was observed in night-active white-fronted lemurs (Eulemur fulvus albifrons). These animals switched from night-active to day-active after reduction of the nocturnal illumination below a certain threshold; but on release into constant conditions, free-running activity always started from the preceding dark phase. This switching was thought to be caused by direct effects of light on activity (masking effects) that do not interfere with the circadian clock. In other words, the animals have strong preferences for certain light conditions, and they accordingly avoid being active under both total darkness, because it precludes visual orientation, and in high irradiances, because it may damage their sensitive eyes. Studies on mice (Mus musculus) yield similar results, with nocturnal animals becoming diurnal after mutations, genetic manipulations, or brain lesions that interfere with photoreceptor input to the circadian clock. One possible explanation is that mice with impaired photoreception simply prefer higher irradiances than wild-type mice (Bachleitner, 2007).

    This study demonstrates that temporal niche switching may be caused by a change in the phasing of the endogenous clock as induced by dim light levels. Masking effects may still be involved, because the masking that is typically seen in conventional light-dark (LD) is lost under light-'moonlight' (LM) conditions. Instead, the flies' activity appears to be promoted by dim light. Despite a contribution of masking effects, this study shows that Drosophila's circadian pacemaker neurons are highly light-sensitive and respond to nocturnal light levels comparable to moonlight. The peripheral oscillators in the eye fail to do so. This finding is extremely interesting with respect to photoreceptor sensitivity. Whereas photoreceptors for visual image detection should quickly adapt to alterations in light intensity to ensure optimal vision, photoreceptors for the circadian clock should not adapt, at least not in the lower ranges. Otherwise, it would be impossible to measure increasing and decreasing irradiances during dawn and dusk. The observed clock protein oscillations in the photoreceptor cells of the compound eyes might regulate light sensitivity of the circadian system. If true, the clock protein levels and oscillations should not be altered by dim light, and the high sensitivity of the clock during early dawn and late dusk should be preserved. Indeed, no alterations were observed in PER and TIM protein levels under LM conditions. Consistent with this finding, it was found that the compound eyes, not the photoreceptor cryptochrome, mediate the responses to moonlight. This finding is in line with previous observations showing that the compound eyes and, thus, rhodopsins are necessary for adaptation of activity times to long and short days. Interestingly, the insect rhodopsins are closely related to the mammalian melanopsin, which is critically involved in mouse circadian photoreception (Bachleitner, 2007).

    But then, what role remains for cryptochrome? Cryptochrome may contribute to the phase delay of the E peak under LM conditions, because cryb mutants show a less dramatic delay of this peak than wild-type flies. However, the E peak was not at all delayed in clieya mutants, suggesting that a phase-delaying effect of cryptochrome is either dependent on the compound eyes or is negligible. Cryptochrome is a blue-light photoreceptor and, thus, most appropriate to detect intensity changes in blue light. Furthermore, the proportion of blue light increases during dawn and decreases during dusk. Thus, cryptochrome appears particularly suited to distinguish dawn or dusk light transitions from moonlight, which does not change its spectrum over time (Bachleitner, 2007).

    These results are interpreted as evidence for a differential action of dim light on the pace of M and E oscillators as was originally proposed in the dual-oscillator model for rodents and recently verified for D. melanogaster. Because the M cells phase advance and a subset of the E cells phase delay their clock in response to dim light, these cells are optimally suited to adapt activity rhythms to seasonal changes in day length. In addition, the proposed role of the LNd cells as E cells is not supported by this study. This finding is in line with earlier work demonstrating that the LNd represent a heterogenous group of cells and that, putatively, only one LNd cell behaves as an E oscillator. It is quite possible that this LNd cell also phase delayed in the present study; but without a specific marker, it was not possible to distinguish it from the other cells. In summary, these results are consistent with the involvement of the PDF-positive s-LNv cells and the PDF-negative fifth s-LNv cells on behavioral rhythmicity. The relevance of the two-oscillator model under natural conditions is also shown (Bachleitner, 2007).

    Not all animals may be as light-sensitive as are fruit flies, but recent studies showed that even species such as hamsters and humans are more sensitive than supposed. The synchronization of Syrian and Siberian hamsters to different photoperiods was facilitated under dim night illumination (<0.005 lux) as compared with DD. Furthermore, the incidence of bimodal activity patterns and the interval between both components increased under LM conditions. In humans, dawn simulations at low light intensities were found to phase advance the circadian melatonin and the activity rhythm. Together with the results presented here, these studies suggest that clock function in many species is conspicuously altered by nocturnal illumination as experienced under dim moonlight. This finding might go back to the ability of primordial marine animals to synchronize their reproduction to the lunar cycle, an ability that is apparently lost in humans and other terrestrial animals. Presumably, many terrestrial organisms do not use their light sensitivity for moonlight detection, but for timing their clock to the increasing and decreasing irradiances during dusk and dawn. Further studies are necessary to reveal whether these animals hide at night from the moonlight so as not to confound their clocks, whether they switch to nocturnal activity (or become sleepless) during the full moon, or whether they use cryptochrome to distinguish moonlight from dawn and dusk (Bachleitner, 2007).

    Large ventral lateral neurons modulate arousal and sleep in Drosophila

    Large ventral lateral clock neurons (lLNvs) exhibit higher daytime-light-driven spontaneous action-potential firing rates in Drosophila, coinciding with wakefulness and locomotor-activity behavior. To determine whether the lLNvs are involved in arousal and sleep/wake behavior, the effects of altered electrical excitation of the LNvs were examined. LNv-hyperexcited flies reverse the normal day-night firing pattern, showing higher lLNv firing rates at night and pigment-dispersing-factor-mediated enhancement of nocturnal locomotor-activity behavior and reduced quantity and quality of sleep. lLNv hyperexcitation impairs sensory arousal, as shown by physiological and behavioral assays. lLNv-hyperexcited flies lacking sLNvs exhibit robust hyperexcitation-induced increases in nocturnal behavior, suggesting that the sLNvs are not essential for mediation of arousal. It is concluded that light-activated lLNvs modulate behavioral arousal and sleep in Drosophila (Sheeba, 2008b).

    The small and large ventral lateral clock neurons (henceforth sLNvs and lLNvs) were among the first cells identified as crucial for normal light entrainment of circadian behavior. Several studies suggest that the sLNvs are responsible for sustained circadian locomotor activity in constant darkness, whereas the lLNvs are less characterized. Recently, it was shown by using whole-cell patch clamp electrophysiology that lLNvs acutely increase their firing rate in response to light in a cryptochrome-dependent fashion (Sheeba, 2008a). Because light is a well-known sensory cue for arousal, as well as circadian entrainment, this study tested whether altered electrical activity of the lLNvs influences locomotor-activity behavior, sleep, and arousal (Sheeba, 2008b).

    These studies show that alteration of the balance of day-night neuronal firing by hyperexcitation of lLNvs in D. melanogaster directs behavioral-activity preference toward increased nocturnality and modulates the quantity and quality of nocturnal sleep. Furthermore, other peptidergic neurons encompassed within the c929 expression pattern modulate both day and night wakefulness and sleep. These results, in combination with an earlier detailed electrophysiological analysis (Sheeba, 2008a), suggest that lLNvs constitute a light-activated arousal circuit. Additional support for this is shown by decreased behavioral responsiveness to day onset in PDF-lacking flies and flies with electrically altered LNvs. It has been shown previously that plasticity in temporal day versus night behavioral preference in mammals and other animals can result from changes in environmental sensory time cues or manipulations that alter sensory-input pathways to circadian clocks. In Drosophila, mutants with partial or complete loss of photoreceptors sometimes show greater activity at night. Mutations in a widely expressed putative cation channel DMα1U (narrow abdomen [na]) also results in a switch from diurnal to nocturnal activity (Nash, 2002). Rescue of diurnal activity was achieved by expression of wild-type channel in parts of the circuit that included lLNvs (Sheeba, 2008b and references therein).

    In the case of NaChBac-induced hyperexcitation of lLNvs, in which NaChBac, a voltage-gated sodium channel, was expressed in LNvs) the normal pattern of light-driven activity during the day is reversed to a novel pattern of firing rate that favors higher activity in the night. The lLNvs are not likely to be 'nocturnal' neurons. Rather, they appear to drive locomotor activity according to their relative day versus night pattern of excitation. Considering that the wild-type electrophysiological firing properties of lLNvs are so dramatically different from NaChBac-evoked firing and sustained hyperexcitation, it is reasonable to wonder how NaChBac expression in LNvs, and specifically a lLNv subset, yields such a coherent pattern of behavioral activity. The results above show that lLNvs modulate arousal and sleep and that altering the relative pattern of day versus night excitability is sufficient to evoke a temporal change in behavioral output. On the basis of these observations, it is hypothesized that the precise firing pattern or timing of lLNv electrical activity is probably not important, thereby making NaChBac expression an appropriate tool to study these neurons and probably other modulatory circuits for which general changes in the gain of activity rather than the precise pattern of activity dictate functional output (Sheeba, 2008b).

    The results reveal that the PDF-expressing peptidergic lLNvs modulate arousal and wakeful behavior as well as sleep stability. Considering these functional studies, lLNvs appear to act as an arousal circuit that is physiologically activated by light and borders with, but is distinct from, the circadian pacemaker and downstream sleep circuits. A number of other recently described modulatory systems in Drosophila influence behavioral locomotion and sleep, including aminergic and GABAergic neurons. As noted, many of the overall features of morning and evening peaks in locomotor activity are retained when lLNv and other peptidergic neuronal subsets are hyperexcited. Considering the naturalistic implications, temporal-niche switching has been observed in a few animals, including the social ant species Camponotus compressus. Among the worker class of these ants, some individuals are diurnal and others nocturnal, and these plastic behavioral differences are associated with differences in their underlying free-running circadian period. On the basis of the current results, it is possible that activity changes in a relatively small number of arousal neurons could influence both short-term temporal-niche switching or long-term evolutionary commitment to a given temporal niche (Sheeba, 2008b).

    A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain

    Circadian clocks synchronize to the solar day by sensing the diurnal changes in light and temperature. In adult Drosophila, the brain clock that controls rest-activity rhythms relies on neurons showing Period oscillations. Nine of these neurons are present in each larval brain hemisphere. They can receive light inputs through Cryptochrome (CRY) and the visual system, but temperature input pathways are unknown. This study investigated how the larval clock network responds to light and temperature. Focus was placed on the CRY-negative dorsal neurons (DN2s), in which light-dark (LD) cycles set molecular oscillations almost in antiphase to all other clock neurons. The phasing of the DN2s in LD depends on the pigment-dispersing factor (PDF) neuropeptide in four lateral neurons (LNs), and on the PDF receptor in the DN2s. In the absence of PDF signaling, these cells appear blind, but still synchronize to temperature cycles. Period oscillations in the DN2s were stronger in thermocycles than in LD, but with a very similar phase. Conversely, the oscillations of LNs were weaker in thermocycles than in LD, and were phase-shifted in synchrony with the DN2s, whereas the phase of the three other clock neurons was advanced by a few hours. In the absence of any other functional clock neurons, the PDF-positive LNs were entrained by LD cycles but not by temperature cycles. These results show that the larval clock neurons respond very differently to light and temperature, and strongly suggest that the CRY-negative DN2s play a prominent role in the temperature entrainment of the network (Picot, 2009).

    Although the absence of PDF severely affects Drosophila activity rhythms in DD, the exact function of the neuropeptide in the adult clock neuronal network remains unclear. In LD, PDF is required to produce a morning activity peak and to properly phase the evening peak, but not to entrain the brain clock. The behavioral phenotypes of PDF receptor mutants resemble that of the pdf01 mutant. PDFR is expressed in all clock neurons except the large ventral lateral neurons (l-LNvs), supporting a role of PDF in maintaining phase coherence within the adult clock network in DD. The loss of PER oscillations in the DN2s of pdf01 larvae demonstrates a clear and novel role of PDF in transmitting not only phase information but also a synchronizing signal without which the receiving neurons are not entrained in LD (Picot, 2009).

    The current results show that the CRY-less DN2s are 'blind' neurons that perceive light indirectly. The PDF receptor rescue experiments strongly suggest that PDF acts on its receptor on the larval DN2s themselves, which are located in the vicinity of the LN axon terminals. Furthermore, DN2s possess a wide and dense neuritic network that borders on the axons of the LNs over a large fraction of their length. However, it cannot be ruled out that expression of the receptor in the (PDF-negative) fifth LN is involved in synchronizing the DN2s downstream, through PDF-independent mechanisms (Picot, 2009).

    The PDF-negative fifth LN is also a CRY-negative clock neuron, but it cycles in phase with the CRY-positive neurons of the larval brain. The visual input to the PDF-expressing LNs appears sufficient to phase them normally even in cryb mutants. It could thus be expected to entrain the CRY-less fifth LN in phase with the other larval LNs, as observed, in contrast to the CRY-less DN2s. A direct input from the visual system to the fifth LN is also consistent with its PDF-independent entrainment by LD cycles. Similarly, light entrainment of the larval DN1s in cryb mutants is consistent with their suggested connection to the visual system. Thus, the CRY-less DN2s would be the only larval clock neurons devoid of such a connection (Picot, 2009).

    Adult eclosion rhythms depend on the PDF-expressing LNs and appear to require the PDF-dependent clock that resides in the prothoracic gland. Since the larval DN2s project in the pars intercerebralis, a region of the brain that sends projections to the prothoracic gland, they could play a role in this physiologically important clock function. These results raise the possibility that the damped PER oscillations in the DN2s of the pdf01 mutants participate to their eclosion phenotype (Picot, 2009).

    The DN2s are the only larval clock neurons that are phased identically by light and temperature, but their temperature entrainment appears independent of any LN-derived signal. PER oscillations in the DN2s have a larger amplitude in HC cycles than in LD cycles, also suggesting a prominent role of temperature in their entrainment. Conversely, the molecular oscillations of the PDF-positive LNs have a larger amplitude in LD compared with HC cycles. In the latter, the molecular oscillations of the PDF-expressing LNs seem to follow those in the DN2s, with a large phase change compared with LD conditions. The DN1s and the PDF-negative fifth LN, in contrast, share another phase that is slightly advanced. Interestingly, behavioral and transcriptome data in adult flies indicate that HC cycles result in a general phase advance relative to LD cycles. Cooperative synchronization of the clock by light and temperature likely requires temperature changes to act earlier than light changes since changes in temperature always lag behind changes in solar illumination in nature. The very different relative phasing of the larval clock neurons in HC versus LD cycles suggests different ecological constraints on this life stage, spent mostly burrowed in food, in which light may be a weaker Zeitgeber, and in which the lag between temperature and light changes may be quite different (Picot, 2009).

    When a functional clock is absent from the DN2s (and the fifth LN), the larval PDF-expressing LNs are unable to entrain to thermocycles, whereas they autonomously entrain to LD cycles. It remains possible that autonomous temperature entrainment of the larval LNs (but not the DN2s) requires per transcriptional regulation, which the GAL4-UAS system is lacking. But the results demonstrate the existence of a control exerted on the LN clock by CRY-negative clock cells when temperature is the synchronizing cue. Although a role of the fifth LN cannot be ruled out, the absence of autonomous photoperception by the DN2s nicely fits with a role in temperature entrainment. The high cycling amplitude of the DN2s in thermocycles and the locking of the phase of the LNs on that of the DN2s in these conditions strongly support their role in the temperature entrainment of the LNs (Picot, 2009).

    Additional studies should investigate whether the DN2s communicate with the LNs via fibers that appear to run along the dorsal projection of the LNs. Alternatively, the dense dendritic-like network of the DN2s could ensure reciprocal exchanges between them and the LNs. A model is thus proposed whereby, in the larval brain, the DN2s and the four PDF-positive LNs form a distinct subnetwork, with the LNs entraining the DN2s in LD, whereas the opposite is true in HC). What becomes of their hierarchy in constant conditions, after entrainment stops? Their relative phases appear to change little at least during the first 2 d after entrainment, whether they have been set in antiphase by LD entrainment, or in phase by HC entrainment. This suggests that, whatever the entraining regimen, the LNs and the DN2s run autonomously in constant conditions. However, it cannot be excluded that one of the two groups still dominates but requires more time after the end of entrainment to shift the phase of the other (Picot, 2009).

    The rhythmic behavior of the adult flies that emerge from the temperature-entrained larvae is almost in antiphase compared with the one of flies entrained by light during the larval stage. This strongly suggests that the phase of the adult rhythms is set by the antiphasic oscillations of the larval PDF-positive LNs, consistent with these cells being the only neurons in which molecular cycling persists throughout metamorphosis. It is thus believed that the large phase shift of adult activity can be accounted for simply by the large phase shift of molecular oscillations in the PDF-expressing LNs (Picot, 2009).

    It is often assumed that temperature affects the molecular clock directly and identically in all clock cells, as opposed to light, which requires dedicated input pathways. However, in the adult, thermocycles phase the brain clock differently from all peripheral clocks, as judged from whole-tissue oscillations of a luciferase reporter enzyme (Glaser, 2005). Recent data suggest that subsets of clock neurons in the Drosophila adult brain may indeed be dedicated to temperature entrainment. In experiments combining LD and HC entrainment, all DN groups, as well as the less studied lateral posterior neurons (LPNs), seem to preferentially follow thermocycles, whereas the other LNs preferentially follow LD cycles (Miyasako, 2007). Although adult PDF+ LNs are able to entrain to thermocycles in the absence of any other functional clock, they do not seem to be required for (and actually slowed down) the temperature entrainment of activity rhythms, whereas the PDF-negative LPNs appear to play a prominent role in such conditions (Picot, 2009).

    The current results indicate that a similar specialization toward light or temperature entrainment exists in the larval brain. The DN2s, which appear to be the most temperature-responsive clock neurons, are by themselves completely blind. Conversely, the four PDF-positive LNs, which may be the most light-sensitive clock neurons (with both CRY and the visual system as inputs), appear almost temperature blind, and depend on the DN2s for temperature entrainment. PER-negative DN2s do not allow PER oscillations in the larval LNs, suggesting that entrainment of the latter in HC cycles depends on clock function in the former. The hierarchy of clock neurons thus appears very different during entrainment of the clock network by one or the other Zeitgeber (Picot, 2009).

    Roles of dopamine in circadian rhythmicity and extreme light sensitivity of circadian entrainment

    Light has profound behavioral effects on almost all animals, and nocturnal animals show sensitivity to extremely low light levels. Crepuscular, i.e., dawn/dusk-active animals such as Drosophila melanogaster are thought to show far less sensitivity to light. This study reports that Drosophila respond to extremely low levels of monochromatic blue light. Light levels three to four orders of magnitude lower than previously believed impact circadian entrainment and the light-induced stimulation of locomotion known as positive behavioral masking. GAL4;UAS-mediated rescue of tyrosine hydroxylase (DTH) mutant (ple) flies was used to study the roles of dopamine in these processes. Evidence is presented for two roles of dopamine in circadian behaviors. First, rescue with either a wild-type DTH or a DTH mutant lacking neural expression leads to weak circadian rhythmicity, indicating a role for strictly regulated DTH and dopamine in robust circadian rhythmicity. Second, the DTH rescue strain deficient in neural dopamine selectively shows a defect in circadian entrainment to low light, whereas another response to light, positive masking, has normal light sensitivity. These findings imply separable pathways from light input to the behavioral outputs of masking versus circadian entrainment, with only the latter dependent on dopamine (Hirsch, 2010).

    Sensitivity to extremely low levels of light is most commonly found in nocturnal animals. These animals, such as nocturnal geckos or insects such as nocturnal hawkmoths, can not only sense extremely low levels of light but can also discern colors at light intensities well below those to which diurnal animals are sensitive. Humans and diurnal vertebrates lose color vision at light intensities comparable to dim moonlight at irradiances of 3-10 nW/cm2. In contrast, nocturnal hawkmoths and geckos can discern colors even at intensities of ~0.01-0.3 nW/cm2 and normally function in starlight, ~0.001 nW/cm2. Extreme light sensitivity in nocturnal insects commonly involves adaptations to their compound eyes to allow summation of photons from many individual ommatidia. These visual system adaptations are not seen in diurnal insects such as the fruit fly Drosophila melanogaster. Accordingly, current data accord Drosophila with rather modest light sensitivity. For light-dependent entrainment of circadian rhythmicity, ~40 nW/cm2 blue light was thought to be required, although subsequent studies show entrainment by 1-5 nW/cm2 white light. Wild-type flies are now thought to entrain at ~0.04 nW/cm2 blue light (C. Helfrich-Forster, personal communication to Hirsch, 2010). An intensity of ~0.5 nW/cm2 white light is reported to cause positive behavioral masking, the largely circadian clock-independent stimulation of locomotion. For comparison, this study found that a dark-adapted human observer loses the ability to perceive the diffuse planar blue light sources used in the present study at intensities of ~0.01-0.03 nW/cm2. This intensity is difficult to compare to published human perception studies, which commonly use short duration flashes of focal light (Hirsch, 2010).

    This study found unexpectedly strong light sensitivity for Drosophila melanogaster, with behavioral masking and circadian entrainment at intensities as low as 0.001 nW/cm2 and at least two roles for dopamine in circadian rhythmicity. First, DTH rescue flies showed poor behavioral rhythmicity in constant dark conditions, independent of whether dopamine levels were rescued in the nervous system. Second, it was found that neuronal DTH rescue flies lacking neuronal dopamine showed reduced light sensitivity for circadian entrainment, whereas light sensitivity of behavioral masking was unaffected. Dopamine has several roles in Drosophila neural function, from modulation of locomotor behaviors and arousal states to learning and memory, but a role for dopamine in insect light-dependent circadian behavioral entrainment is novel (Hirsch, 2010).

    The two circadian phenotypes likely represent separate roles for dopamine, presumably in different regions of the nervous system, because reduced amplitude of rhythmicity, as seen in DTH rescue lines, is normally associated with higher rather than lower efficacy of reentrainment. The dopaminergic system in Drosophila is highly rhythmic, as evidenced by rhythmicity in responsiveness to dopamine agonists and by the rhythmic transcription of the tyrosine hydroxylase gene ple, which encodes the rate-limiting enzyme in dopamine biosynthesis. The rhythmicity of the ple transcript may explain the poor rhythmicity in ple rescue animals. These animals have near-normal levels of brain dopamine in an apparently normal cellular pattern, but the inclusion of the GAL4 transcription factor into the regulatory cascade will almost certainly interfere with normal temporal cycling of the DTH transcript. Note that significant diurnal variation in levels of brain dopamine in brain extracts have not been detected, but this does not preclude diurnal variation in dopamine neuron subsets (Hirsch, 2010).

    Low-light circadian entrainment is disrupted in the brain dopamine-deficient DTHgFS±;ple flies. The simplest mechanism for the disruption of low-light circadian entrainment would be due to alterations in the photoreceptive pathway, which could be via cryptochrome (CRY) or visual photoreceptors. There is some support for dopaminergic involvement in the CRY pathway, because Sathyanarayanan (2008) identified ple in a screen for genes that, when targeted by RNA interference, have a strong inhibitory effect on light-dependent degradation of CRY and timeless (TIM) in cultured cells. This could indicate a positive role for dopamine in light-dependent degradation of these molecules, providing a potential mechanism for the reduced light sensitivity for circadian entrainment that was observed in the absence of dopamine (Hirsch, 2010).

    Alternatively, it is known that visual photoreceptors are involved in dim-light entrainment because genetic loss of all photoreceptive visual organs results in at least a three-order-of-magnitude reduction in blue light sensitivity for circadian entrainment. Analogous studies in mice show an ~60-fold reduction in dim-light sensitivity for entrainment in animals lacking both rods and cones (Hirsch, 2010).

    A role for dopamine in fly visual function has some support in that cyclic AMP (cAMP) can slow the response to light in a preparation of isolated Drosophila photoreceptors (Chyb, 1999), and this effect can be mimicked by application of octopamine or dopamine, an effect interpreted as enhanced adaptation to dark. Dopamine signaling, via cAMP second-messenger pathways, is not currently considered part of the main insect visual transduction pathway. However, dopamine involvement could have been missed if it has an exclusive role in a neural pathway selectively required for circadian entrainment by dim light (Hirsch, 2010).

    There is strong support of a role for dopamine functioning in the vertebrate retina, which makes visual involvement of dopamine in the fly all the more likely. The vertebrate retina contains autonomous circadian oscillators that are thought to allow the retina to prepare for the large difference in light intensity between day and night. Central to this rhythmicity are opposing and rhythmic roles for melatonin and dopamine, with release of each modulator inhibiting synthesis and/or release of the other. The best defined role for dopamine in the vertebrate circadian oscillator is in entraining fetal rodents prior to light exposure, a capacity lost in adults. This role of dopamine could be related to the roles that have been uncovered in adult Drosophila (Hirsch, 2010).

    The selective effect of neural dopamine on low-light entrainment versus low-light masking behavior implies separable pathways involved in modulating these behaviors, a novel finding because previous studies have only identified circadian components with parallel effects on masking (Mazzoni, 2005). The best defined synaptic connections from eye to circadian neurons are the projections from the Drosophila eyelet, a remnant of the larval photoreceptive Bolwig's organ. This photoreceptive organ makes projections that terminate in close apposition to neurites from the small and large ventral lateral neurons, neurons key to circadian rhythmicity. Connections from the main visual photoreceptors to these circadian neurons must be indirect because the rod-like outer photoreceptor ommatidia terminate in the optic lamina, and the cone-like central ommatidia terminate in the optic medulla. Nonetheless, dopamine could be acting as a neuromodulator in any of these pathways to increase sensitivity to a light-dependent signal. The genetic tools available in Drosophila should prove useful to precisely identify these pathways (Hirsch, 2010).

    Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling

    Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. This prediction is tested directly in this study. During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. Twenty-six genes required for Drosophila melanogaster sleep were identified. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, a conserved genetic pathway was delineated by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. The comprehensive analysis presented in this study suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry (Singh, 2014).

    PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit

    Daily sleep cycles in humans are driven by a complex circuit within which GABAergic sleep-promoting neurons oppose arousal. Drosophila sleep has recently been shown to be controlled by GABA, which acts on unknown cells expressing the Rdl GABAA receptor. This study has identified the relevant Rdl-containing cells as PDF-expressing small and large ventral lateral neurons (LNvs) of the circadian clock. LNv activity regulates total sleep as well as the rate of sleep onset; both large and small LNvs are part of the sleep circuit. Flies mutant for pdf or its receptor are hypersomnolent, and PDF acts on the LNvs themselves to control sleep. These features of the Drosophila sleep circuit, GABAergic control of onset and maintenance as well as peptidergic control of arousal, support the idea that features of sleep-circuit architecture as well as the mechanisms governing the behavioral transitions between sleep and wake are conserved between mammals and insects (Parisky, 2008).

    Using a variety of mutants and novel genetic strategies to manipulate chronic and acute circuit activity, this study has shown that a small set of circadian clock cells in Drosophila has a critical role in the GABAergic initiation and maintenance of sleep. New genetic tools (dnATPase, ShawRNAi), were developed that allow an increase in the chronic response of neurons to their endogenous inputs. This adds greatly to the arsenal of activity-manipulating tools, most of which suppress firing or neurotransmitter release. Bidirectional manipulation of activity provides much more information about circuit function and dynamics. The utility was demonstrated of a new tool for acute activity manipulation (dTrpA1), which can be used on small numbers of neurons deep within the fly brain. The data suggest a model in which the pdf-GAL4-positive large LNvs (l-LNvs) translate light inputs (and perhaps other arousal signals) into wakefulness. The release of PDF from these cells is required, and l-LNv PDF signals to the smaller s-LNvs. The data demonstrating somnolence after downregulation of PDFR in LNvs indicates that s-LNvs participate in sleep control, although experiments in which they have been ablated suggest that they are not be the only sleep-relevant l-LNv targets. PDF signaling to PDFR-expressing neurons outside the clock that directly control activity is likely to be important. GABA may modulate the ability of LNvs to suppress sleep by acting on either or both s- and l-LNvs (Parisky, 2008).

    In mammals, the role of the circadian clock in sleep is not completely understood. It is nonetheless clear that there are genetic (e.g., familial advance sleep phase syndrome) and environmental (e.g., jet-lag, shift work) conditions that disrupt sleep despite primarily affecting the circadian rhythms. The clock has been shown to regulate both when an animal sleeps and how much sleep occurs. The current consensus view is that the mammalian clock is primarily wake-promoting, acting along with the homeostatic sleep drive to shape sleep over the day and night (Parisky, 2008).

    The data indicate that in flies PDF and the circadian LNvs more generally regulate both the maintenance of sleep as well as the ability of flies to respond to the wake-promoting effects of light. Although these effects recall the role of the mammalian SCN in sleep regulation, there are few prior links between the Drosophila circadian clock and the regulation of fly sleep. The almost complete elimination of the difference in total sleep between subjective day and subjective night in the pdf01 background adds substantially to this connection, i.e., light regulation of sleep appears to be substantially circadian clock-mediated Therefore, the contribution of the circadian machinery and fly brain clock circuitry to the control of sleep will probably parallel the important role of the mammalian circadian clock and the SCN in sleep regulation (Parisky, 2008).

    PDF neurons have been recently shown to be light-responsive, like some neurons of the mammalian SCN. The l-LNvs also act as the dawn photoreceptor for the clock, sending a reset signal each morning to the rest of the clock. There is also good evidence that fly cryptochrome responds directly to light in addition to influencing circadian timekeeping, and a cry mutant substantially decreases the PDF neuron acute light response. Therefore, some of the waking effects described in this study probably reflect a role of PDF cells on acute processes involving light stimulation. Indeed, the phenotypes of flies without PDF or with decreased LNv neuronal excitability resemble some of the acute effects of the loss of orexin/hypocretin in narcoleptic mice. PDF neurons are also regulated by GABAergic inputs, analogous to those from the basal forebrain that regulate orexin/hypocretin neurons (Parisky, 2008).

    Despite these similarities, there are also important organizational differences between systems. Most notable is the wide distribution of sleep circuitry in mammals. There are for example many targets of sleep-promoting GABAergic neurons, and the role of the circadian clock may be largely modulatory. The sleep circuitry of flies is almost certainly more circumscribed and simpler. Indeed, the surprisingly large effects of manipulating Rdl in the 16 LNvs argue that they are a principal target of sleep promoting GABAergic neurons and constitute part of the 'core' sleep circuitry. The fact that activation of a subset of these cells, the l-LNvs, has an effect on sleep homeostasis, further suggests that these cells sit at the heart of the sleep circuit. The fly sleep circuitry may therefore have condensed mammalian stimulatory systems (e.g., histaminergic, cholinergic and adrenergic, as well as orexin) into a simpler and more compact region, which may even largely coincide with the sixteen PDF cells of the circadian circuit (Parisky, 2008).

    A limited number of other fly brain regions have been proposed to contribute to fly sleep. Manipulations of a broad set of peptidergic (PHM+) cells indicate that peptidergic neurons other than PDF neurons are wake promoting. An attractive hypothesis is that some these other peptidergic cells reside in the pars intercerebralis, a group of neurohumoral cells shown to an important sleep output center. The targets of these cells may even overlap with the targets of LNvs, e.g. the ellipsoid bodies. The PDFR is a class II G-protein coupled receptor and is fairly promiscuous: PDF is the highest affinity ligand, but this receptor is also activated by DH31 and PACAP-38. Since peptidergic modulation may occur by 'volume' transmission instead of by direct synaptic contact, both LNv peptides and peptides from the pars could together affect this motor center to regulate sleep and activity. The role of the pars may be to inform the sleep generation machinery about nutritional and metabolic state, i.e., animals undergoing starvation exhibit hyperlocomotor activity that is believed to be evolutionarily useful as a method for finding food, and alteration of this pars-generated locomotor program affects sleep. The role of l-LNvs is clearly different from that of other PHM+ neurons, and their unique involvement in homeostatic sleep suggests they are central to sleep control (Parisky, 2008).

    The only other brain region that has been implicated in Drosophila sleep regulation is the paired structure known as the mushroom bodies. These studies showed that GAL4-driven manipulation of signaling or of neurotransmitter release in this neuropil had complex effects on sleep, not inconsistent with a modulatory role for this sensory integration center. The exact mechanism of these effects is not clear, however, especially since all of the mushroom body GAL4 lines that were examined in this study also express in multiple subsets of clock cells (Parisky, 2008).

    The small circuit this study describes presents a tractable model system for understanding the circuit-level control of sleep, the relationship between homeostatic and circadian control as well as the dynamics of sleep-wake transitions; the latter are critical to an understanding of episodic and age-related insomnia (Parisky, 2008).

    The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity

    In the first optic neuropil (lamina) of the fly's visual system, two interneurons, L1 and L2 monopolar cells, and epithelial glial cells show circadian rhythms in morphological plasticity. These rhythms depend on clock gene period (per) and cryptochrome (cry) expression. This study found that rhythms in the lamina of Drosophila may be regulated by circadian clock neurons in the brain since the lamina is invaded by one neurite extending from ventral lateral neurons; the so-called pacemaker neurons. These neurons and the projection to the lamina were visualized by green fluorescent protein (GFP). GFP reporter gene expression was driven by the cry promotor in cry-GAL4/UAS-GFP transgenic lines. It was observed that the neuron projecting to the lamina forms arborizations of varicose fibers in the distal lamina. These varicose fibers do not form synaptic contacts with the lamina cells and are immunoreactive to the antisera raised against a specific region of Schistocerca gregaria ion transport peptide (ITP). ITP released in a paracrine way in the lamina cortex, may regulate the swelling and shrinking rhythms of the lamina monopolar cells and the glia by controlling the transport of ions and fluids across cell membranes at particular times of the day (Damulewicz, 2011).

    This study showed a single projection from the pacemaker cells in the brain to the lamina, in which several structural circadian rhythms have been detected. Moreover, this input probably originates from the 5th small LNv. Since the 5th s-LNv does not express PDF, this cell is different from the other LNvs. The possibility that this process originates from other clock cells, for example from the LNds, and extends to the aMe first, and next to the lamina cannot be excluded. A CRY-positive LNd, which is immunoreactive to ITP, could invade the lamina by passing the aMe first. This neuron, however, is also immunoreactive to sNPF, but the projection detected in the lamina is immunoreactive to ITP only. It indicates that this projection originates from the 5th s-LNv, which is immunoreactive to ITP but not to sNPF. This study examined GFP expression driven by cry-GAL4 in thin, 20 microm cryostat sections and thick 100 microm vibratom sections of the Drosophila brain. In most earlier studies on clock neurons and their projections, whole-mount preparations of the Drosophila brain were used, or the lamina was cut-off during preparation. Such procedures from previous studies meant that the very fine projection from the brain to the lamina could not be observed. This study detected the projection by using 20 microm sections and collecting confocal optical sections at a 1 microm interval (Damulewicz, 2011).

    In several previous studies, it has been suggested that CRY is present in different types of clock neurons. These results have been obtained using various methods; cry-GAL4 driven GFP expression, cry mRNA in situ hybridization, immunolocalization and cry deletion mutants. Using cry-GAL4 line and 20 microm sections of the D. melanogaster brain, it was found that CRY is located in all s-LNvs, l-LNvs, LNds, DN1s and DN3s but is absent in DN2s and LPNs. These results only partly confirm the results of earlier studies. It has been shown that LNvs but only some DN1, and three or four from the six LNd are CRY - positive, while DN2, DN3 and LPNs are CRY-negative. One study did d not detect CRY in DN2s and DN3s, and in about half of the LNds and DN1, but cry promoter dependent reporter genes and cry mRNA can be detected in these neurons. In this study, all of LNds showed GFP fluorescence in the cry-GAL4 strain, but only 3-4 cells were found to be CRY-immunopositive using antibodies. In turn, using the in situ hybridization method, cry mRNA was not detected in those cells. Since the pattern of cry-GAL4 driven GFP expression depends on the transgene insertion site and whether the first intron of the transgene has been inserted, spatial and circadian regulation of cry was examined. A series of cry-GAL4 transgenes containing different portions of cry upstream and intron 1 sequences was examined. The first intron was shown to drive expression in eyes and antennae, and upstream sequences induce cry expression in brain clock neurons and in peripheral oscillators; in eyes and antennae. In addition, upstream sequences also induce expression of cry, in other non-clock cells in the optic lobe (Damulewicz, 2011).

    The results obtained using various methods suggest that in the case of CRY, translation and cry transcription may be specifically regulated. CRY-positive labeling in the 4th LNd was observed in flies kept for 5 days in constant darkness. Flies kept longer in this condition brought on weak staining in one of the DN2 neurons. Thus, the level of CRY in this neuron may be very low, and the CRY level may only be detected after it has accumulated for several days in DD. It is possible, that in some of the LNds, DN1 and DN3 cry expression is very low and protein is undetectable by the immunohistochemistry method, or that cry mRNA is unstable and CRY protein is not synthesized. Among six LNds, three neurons, that show a strong signal of GFP in the brain cryostat sections used in this study, may correspond to CRY-positive cells detected in the studies of other authors. In turn, three LNds with weak GFP in these preparations may correspond to CRY immunonegative cells. These cells had about a 50% lower GFP level than the rest of the LNds at all time points, except at ZT4 when their GFP fluorescence was lower by 20% (Damulewicz, 2011).

    Beside neurons, clock genes have also been detected in glial cells. A subpopulation of glial cells in the brain of Drosophila have rhythmic expression of per gene, and they are necessary for maintaining circadian locomotor activity. However, the presence of CRY in glia was not detected in this study. In the optic lobes, GFP driven by cry-GAL4 was observed in many non-clock cells in which the localization pattern was very similar to the distribution of glial cells. But these non-clock cells were not labeled with the antibody against REPO protein, a specific marker for glial cells. The REPO protein is required for glia development and differentiation and has been detected in all types of glia in the adult brain of Drosophila. The analysis of cry-GAL4 driven GFP and REPO immunolabeling showed no co-localization between CRY and REPO. However, in the close vicinity of GFP-positive cells, REPO-positive glial cells were observed. A similar result was obtained using the antibody against the Drosophila vesicular monoamine transporter (DVMAT), which enabled labeling the fenestrated glia in the optic lobe. These results suggest that CRY is present in non-clock neurons in the optic lobe, but not in glial cells (Damulewicz, 2011).

    In addition to localization of cry-GAL4 driven GFP in cell bodies of neurons, GFP processes were also detected invading three neuropils in the optic lobe. In the medulla, a dense network of processes originate from DN3s and their terminals seem to form synaptic contacts with not-yet identified target cells. The regular network of processes was also detected in the lobula but their origin is unknown. The most interesting finding is the projection of CRY-positive processes to the lamina. Although the lamina showed robust circadian remodeling of neuron morphology, a circadian input had not been previously detected. In the lamina, per is probably expressed in the epithelial glial cells, however, maintaining the lamina structural rhythms also requires per expression in the retina photoreceptors and in the LNs (Damulewicz, 2011).

    Beside PER, CRY is also important for circadian rhythms in the lamina. In an earlier study, it was shown that the circadian rhythm in morphological plasticity of L2 dendritic trees, is not present in per01 mutant while its phase depends on CRY. In cryb mutant, the pattern of daily changes in size of the L2 dendritic tree was different than in wild-type Canton-S flies. In males and females of Canton-S wild-type flies, the largest L2 dendritic tree was found at the beginning of the day. This daily pattern of the structural changes of L2 dendrite resembles the pattern of cry mRNA cycling in Drosophila heads and bodies, and in the 5th s-LNv detected in this study. Although the L2 dendritic tree is the largest at the beginning of the day in the distal lamina, its axon, as well as the axon of L1 monopolar cell, swell at the beginning of both day and night. These changes have been detected in the proximal lamina. Moreover, the α-subunit of the Na+/K+-ATPase and subunits of the V-ATPase also show diurnal changes in abundance in the lamina. Such an occurrence indicates that circadian rhythms in cell structural plasticity are correlated with rhythmic changes in the level of proteins involved in the transport of ions. The rhythm in the α-subunit of the Na+/K+-ATPase level is bimodal with two peaks; in the morning and in the evening. This pattern is changed in the cry0 mutant. It indicates that CRY is not only important for the maintenance of the daily pattern of morphological changes of the L2 dendritic tree but CRY also helps to maintain cycling of the Na+/K+-ATPase in the epithelial glial cells in the lamina (Damulewicz, 2011).

    It is uncertain whether there is regulation of lamina rhythms by the brain pacemaker because connections between the pacemaker neurons in the accessory medulla and the lamina have not been observed. It was found, however, that rhythms in axon plasticity of neurons in the lamina are circadian, have two peaks (morning and evening) and are synchronized with locomotor activity. The present results now show, that thin neurite extends from the aMe and arborizes in the distal lamina. In the aMe, the s-LNvs are regarded as the main pacemaker cells maintaining circadian rhythms. The l-LNvs are involved in behavioral arousal and sleep. For these reasons, the LNvs are good candidates as oscillators controlling lamina rhythms. Moreover, all LNvs except the 5th s-LNv, express PDF which may synchronize central oscillators with each other and with peripheral ones. In the housefly, large PDF-immunoreactive neurons, similar to Drosophila's l-LNvs, have terminals in the lamina which show circadian structural changes. Moreover, these neurons cyclically release PDF that affects circadian plasticity in the lamina. In Drosophila, release of PDF from PDF-immunoreactive processes in the medulla, where these processes form a dense network of varicose processes, is also possible. These processes, however, do not extend to the lamina. In the present study, PDF immunolabeling of the newly described Drosophila's CRY-positive terminals in the lamina was negative. This does not exclude PDF action in the lamina, particularly when PDF receptors have been detected in non-neuronal cells between the lamina and the retina. PDF may diffuse in the lamina after release from terminals in the distal medulla (Damulewicz, 2011).

    Ion transport peptide (ITP) and short neuropeptide F (sNPF) have been detected in the LNvs. Among the five s-LNvs, ITP was found in the 5th s-LNv, while sNPF was observed in four other s-LNvs which also express PDF. In the present study, ITP-immunoreactive fibers were detected, using the Schgr-ITP antisera, in the distal lamina, co-localized with cry-GAL4 driven GFP. The co-localization with ITP suggests that the projection into the lamina may originate from the 5th s-LNv. Little is known about the function of the 5th s-LNv. It has been suggested, that this neuron, together with LNds and some DN1s, drive the evening peak of D. melanogaster bimodal activity. The finding indicates a possible new function of the 5th s-LNv in regulating circadian structural rhythms in the lamina, since this neuron is immunoreactive to ITP. Like other peptides in the optic lobe, ITP seems to be released from varicose terminals in a paracrine way. This conclusion was reached because no synaptic contacts between ITP-immunoreactive processes and cells in the lamina were detected. This peptide probably diffuses in the distal lamina and may facilitate chloride and/or other ion-dependent swelling and shrinking of the L1 and L2 axons. At least two ion pumps; the V-ATPase and Na+/K+-ATPase, show robust cyclical activity in the epithelial glial cells. The epithelial glial cells swell and shrink in anti-phase to the L1 and L2 interneurons. Preliminary results showed that in a transgenic line carrying RNAi to block ITP expression, the pattern of rhythmic changes in the level of the α-subunit of the Na+/K+-ATPase in the lamina glial cells of Drosophila is different than the pattern in wild-type flies. Thus, not only CRY but also ITP is important for maintaining rhythmic activity changes of the Na+/K+-ATPase (Damulewicz, 2011).

    The function of ITP in the nervous system is unknown. In the lamina ITP may play a similar regulatory role as in hindgut of insects, transporting ions and fluids across cell membranes (Damulewicz, 2011).

    Since the L1 and L2 monopolar cells swell in the morning and in the evening, ITP released from the 5th s-LNv may drive the evening peak of this rhythm. This is thought to be so, because the 5th s-LNv and LNd are regarded as the lateral neurons' evening oscillator. In turn, PDF may drive the morning peak because PDF is thought to control the morning peak of locomotor activity, in a LD 12:12 regime. However, PDF's role in promoting locomotor activity in the evening has also been shown. The role of ITP as a neurotransmitter of circadian information to the lamina and as a possible regulator of rhythmic swelling and shrinking of the L1 and L2 monopolar cells, requires more experimentation and will be the subject of the next study (Damulewicz, 2011).

    Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons

    Neuropeptide PDF (pigment-dispersing factor)-secreting large ventrolateral neurons (lLNvs) in the Drosophila brain regulate daily patterns of rest and arousal. These bilateral wake-promoting neurons are light responsive and integrate information from the circadian system, sleep circuits, and light environment. To begin to dissect the synaptic circuitry of the circadian neural network, simultaneous dual whole-cell patch-clamp recordings of pairs of lLNvs were performed. Both ipsilateral and contralateral pairs of lLNvs exhibit synchronous rhythmic membrane activity with a periodicity of ~5-10 s. This rhythmic lLNv activity is blocked by TTX, voltage-gated sodium blocker, or α-bungarotoxin, nicotinic acetylcholine receptor antagonist, indicating that action potential-dependent cholinergic synaptic connections are required for rhythmic lLNv activity. Since injecting current into one neuron of the pair had no effect on the membrane activity of the other neuron of the pair, this suggests that the synchrony is attributable to bilateral inputs and not coupling between the pairs of lLNvs. To further elucidate the nature of these synaptic inputs to lLNvs, a variety of neurotransmitter receptors were blocked or activated, and effects on network activity and ionic conductances were measured. These measurements indicate the lLNvs possess excitatory nicotinic ACh receptors, inhibitory ionotropic GABAA receptors, and inhibitory ionotropic GluCl (glutamate-gated chloride) receptors. It was demonstrated that cholinergic input, but not GABAergic input, is required for synchronous membrane activity, whereas GABA can modulate firing patterns. It is concluded that neuropeptidergic lLNvs that control rest and arousal receive synchronous synaptic inputs mediated by ACh (McCarthy, 2011).

    Previously studies have shown that neural circuits responsible for generating circadian rhythms and also those neural networks controlling rest and arousal exhibit synchronous membrane activity both in mammals and in insects. Furthermore, neuropeptides, VIP and PDF, in mammals and flies, respectively, and the classical neurotransmitter, GABA, play critical roles in this synchrony. Furthermore, this study found that stereotyped neurons that were positive for a well studied driver exhibited varying degrees of synchrony with lLNv membrane activity. This is consistent with a model in which certain neurons receive some of the same inputs as lLNvs and some unique inputs. Similar to the observations in Drosophila, neurons in some mammalian brain regions outside the suprachiasmatic nucleus (SCN) exhibit synchronized membrane activities with SCN neurons. The data do not, however, preclude the possibility that the synchrony that was observe is attributable to widespread epileptiform or other widespread synchronous brain activity that is not specific to lLNvs. This explanation is not favored because lLNv pairs exhibiting varying degrees of synchrony were observed and also lLNv pairs in which one cell is burst firing while the other is tonically firing, as shown in the paired recording pharmacology experiments. Even if it is the case that the synchronized activity that was seen is attributable to some sort of epileptiform or other widespread synchronous activity, the nature of and mechanisms underlying this activity are still informative, as it provides insight into the connectivity of the network (McCarthy, 2011).

    To characterize the nature of synaptic inputs to lLNvs, a combination of agonists and antagonists against neurotransmitter receptors were used in both current-clamp and voltage-clamp mode. Current-clamp mode was used to monitor modulation of membrane activity in the lLNvs in the context of the functional neural network, whereas voltage-clamp mode was used to determine the presence of underlying receptors in the lLNvs themselves. lLNvs were found to receive excitatory cholinergic input through nAChR. Treatment of brains with cholinergic receptor agonists, acetylcholine and nicotine, enhances membrane activity, depolarizing the neurons and increasing action potential firing rate, whereas treatment with ACh receptor antagonists, curare and a-BuTX, inhibits membrane activity. Voltage-clamp recordings in the presence of TTX revealed that ACh- and nicotine-induced currents occur in lLNvs themselves, and these currents reverse near the equilibrium potential for nonselective monovalent cation channels, as expected for currents through nicotinic acetylcholine receptors. In insects, acetylcholine is the primary excitatory neurotransmitter in the CNS, and nAChRs are widely expressed in the Drosophila brain. These receptors are known to mediate fast synaptic transmission in Kenyon cells in the adult mushroom body. A previous study has also shown that dissociated PDF-positive neurons from the larval Drosophila brain, which are developmental precursors of the LNvs, express nAChRs and exhibit both ACh-induced and nicotine-induced increases in intracellular calcium that are dependent on both external sodium and calcium concentrations. The current findings confirm that lLNvs in the adult circadian neural network possess nAChRs and that these receptors mediate excitatory synaptic input and synchrony of rhythmic firing (McCarthy, 2011).

    GABA is a major neurotransmitter in the Drosophila CNS, mediating fast inhibitory synaptic transmission through the GABAA receptor. This receptor has been shown to be expressed in LNvs and has been shown genetically to play a major role in the regulation of arousal and sleep by lLNvs specifically (Parisky, 2008; Shang, 2008; Chung, 2009). GABA-induced decreases in intracellular calcium and Cl- currents have been recorded in dissociated PDF neurons from the larval and adult fly brain, respectively, but previous studies have not analyzed effects of GABA on lLNv membrane activity in the context of the intact circadian rest/arousal control network. This study demonstrated that GABA inhibits the membrane activity of lLNvs, whereas the ionotropic GABAR antagonist, picrotoxin, is excitatory. In contrast, another study has shown no rescue of the inhibitory effect of GABA by picrotoxin on PDF+ LNv precursors but does show alleviation of GABA-induced inhibitory responses in these neurons by metabotropic GABABR antagonists. Although the current studies do not exclude a role for GABABRs in lLNvs, the discrepancy of the effect of picrotoxin could be attributable to changes in different GABAR subtype expression at different developmental stages (McCarthy, 2011).

    Through an extensive series of voltage-clamp experiments it was determined that GABA induces currents in lLNvs that reverse at the equilibrium potential of Cl-, indicating that these currents are mediated by GABAARs. These data demonstrate that lLNvs express the GABAAR and that lLNvs receive GABAergic inhibitory synaptic input. These data from paired recordings in lLNvs show that GABAergic synaptic input, in conjunction with PDF signaling, plays a critical role in modulating the membrane activity of lLNvs but is not required for the robust synchrony of firing in these neurons, as application of picrotoxin does not abolish synchronous firing. Conversely, in the cockroach, picrotoxin leads to desynchrony within circadian neural networks. In this system, PDF also serves to synchronize these neural populations by inhibiting GABAergic interneurons. This mechanism does not seem to be conserved in Drosophila, but additional experiments are needed to elucidate the effect of PDF on the synchronous electrical activity of the circadian neural circuit (McCarthy, 2011).

    Glutamate and its excitatory ionotropic receptors, homologs of the AMPA, kainate, and NMDA receptors in mammals, have been shown to mediate fast excitatory neurotransmission at the neuromuscular junction (NMJ) in Drosophila. Interestingly, the current data demonstrate that treatment of lLNvs with glutamate led to an inhibition of membrane activity, which is opposite to the effect seen at the NMJ. Through voltage-clamp experiments, it was shown that this glutamate-induced current in lLNvs reverses near the equilibrium potential of Cl-. Furthermore, when the Cl- concentration of the external solution was altered and the reversal potential of the current was measured, the experimental value was well predicted by the calculated equilibrium potential for each specific Cl- concentration. These data together indicate that lLNvs possess a glutamate-gated Cl- channel. Members of the GluCl family have been cloned from bothDrosophila and C. elegans but have not been found in vertebrate species. Their functional roles in neural circuits in Drosophila remain enigmatic. The current studies indicate these channels are present in lLNvs, which also express metabotropic glutamate receptors. Their role in synchronous membrane activity between lLNvs remains to be elucidated (McCarthy, 2011).

    Given the variety of the synaptic inputs to lLNvs described in this study, the ability of lLNvs to autonomously detect light through the blue light-activated photopigment CRY, and the convergence of the arousal and circadian circuits on lLNvs, these neurons are clearly in a position to integrate complicated signals from all these systems. The data also show that the rhythmic oscillation in membrane activity seen in these neurons is most likely not attributable to intrinsic pacemaking, but instead arises from synchronized synaptic inputs, both excitatory and inhibitory. It remains to be determined where these cholinergic, GABAergic, and glutamatergic synaptic inputs converging on lLNvs originate. Previous studies have demonstrated that the Hofbauer-Büchner adult eyelets, which are derived developmentally from Bolwig's organ in the larvae, send axon bundles to the dendritic region on LNvs. These cholinergic neurons may provide excitatory input to lLNvs via nAChRs. However, it is not considered likely that Hofbauer-Büchner cholinergic inputs to the lLNvs contribute to rhythmic activity in the whole-brain explant. As far as anatomical characterization of the inhibitory inputs into lLNvs, varicosities in the accessory medulla, which abut lLNv dendrites, express glutamic acid decarboxylase, a marker for GABAergic neurons; however, it is not known where cell bodies reside from which these processes originate. In addition, it has been previously shown that other circadian clock neurons are glutamatergic. The axon terminals of these neurons are in close proximity to the dendritic arbors of the lLNvs in the larval optic center and in the accessory medulla of the adult fly. These data, in combination with the current findings, suggest that GluCl within lLNvs may mediate inhibitory synaptic inputs from other clock neurons in the circadian circuit (McCarthy, 2011).

    Through the use of whole-cell patch-clamp electrophysiology techniques, this study has demonstrated synchronous membrane activity of lLNvs of the circadian rest/arousal neural network of Drosophila arising from bilateral synchronized synaptic inputs. This synchronous membrane activity is mediated by cholinergic inputs to the lLNvs themselves. However, GABAergic inputs modulate membrane activity of these neurons but are not required for synchrony. The role of glutamatergic signaling in synchronous membrane activity between lLNv pairs remains to be revealed, as agents to pharmacologically inhibit GluCl are not currently available. Building on these findings, future studies are required to elucidate the overlapping neural circuitry of the circadian, rest/arousal, and light input systems, and will discern how these systems are integrated and finely coordinated to generate a robust and complex pattern of behavior (McCarthy, 2011).

    Drosophila pacemaker neurons require G protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms

    Intercellular signaling is important for accurate circadian rhythms. In Drosophila, the small ventral lateral neurons (s-LNvs) are the dominant pacemaker neurons and set the pace of most other clock neurons in constant darkness. This study shows that two distinct G protein signaling pathways are required in LNvs for 24 hr rhythms. Reducing signaling in LNvs via the G alpha subunit Gs, which signals via cAMP, or via the G alpha subunit Go, which signals via Phospholipase 21c, lengthens the period of behavioral rhythms. In contrast, constitutive Gs or Go signaling makes most flies arrhythmic. Using dissociated LNvs in culture, it was found that Go and the metabotropic GABA(B)-R3 receptor are required for the inhibitory effects of GABA on LNvs and that reduced GABA(B)-R3 expression in vivo lengthens period. Although no clock neurons produce GABA, hyperexciting GABAergic neurons disrupts behavioral rhythms and s-LNv molecular clocks. Therefore, s-LNvs require GABAergic inputs for 24 hr rhythms (Dahdal, 2010).

    The long-periods observed with reduced Gs signaling are consistent with four other manipulations of cAMP levels or PKA activity that alter fly circadian behavior. First, long-period rhythms with dnc over-expression complement the short periods of dnc hypomorphs and suggest that the latter are due to loss of dnc from LNvs. dnc mutants also increase phase shifts to light in the early evening. However, this study found no difference in phase delays or advances between Pdf > dnc and control flies, suggesting that altered light-responses of dnc hypomorphs are due to dnc acting in other clock neurons. The period-altering effects seen when manipulating cAMP levels are also consistent with finding stat expressing the cAMP-binding domain of mammalian Epac1 in LNvs lengthens period. This Epac1 domain likely reduces free cAMP levels in LNvs, although presumably not as potently as UAS-dnc. Third, mutations in PKA catalytic or regulatory subunits that affect the whole fly disrupt circadian behavior. Fourth, over-expressing a PKA catalytic subunit in LNvs rescues the period-altering effect of a UAS-shibire transgene that alters vesicle recycling, although the PKA catalytic subunit had no effect by itself. The long periods observed with reduced Gs signaling in LNvs also parallel mammalian studies in which pharmacologically reducing Adenylate cyclase activity lengthened period in SCN explants and mice (Dahdal, 2010).

    G-proteins typically transduce extracellular signals. What signals could activate Gs in s-LNvs? PDF is one possibility since PDFR induces cAMP signaling in response to PDF in vitro, indicating that it likely couples to Gs. PDF could signal in an autocrine manner since PDFR is present in LNvs. However, the long-periods observed with reduced Gs signaling differ from the short-period and arrhythmic phenotypes of Pdf and pdfr mutants. The likeliest explanation for these differences is that the altered behavior of Pdf and pdfr mutants results from effects of PDF signaling over the entire circadian circuit, whereas the current manipulations specifically targeted LNvs. Indeed, LNvs are not responsible for the short-period rhythms in Pdf01 null mutant flies. Other possible explanations for the differences between the long-period rhythms with decreased Gs signaling in LNvs and the short-period rhythms of Pdf and pdfr mutants are that additional GPCRs couple to Gs in s-LNvs and influence molecular clock speed and that the current manipulations decrease rather than abolish reception of PDF. In summary, the data shows that Gs signaling via cAMP in s-LNvs modulates period length (Dahdal, 2010).

    Go signaling via PLC21C constitutes a novel pathway that regulates the s-LNv molecular clock. This study found that Go and the metabotropic GABAB-R3 receptor are required for the inhibitory effects of GABA on larval LNvs, which develop into adult s-LNvs. The same genetic manipulations that block GABA inhibition of LNvs in culture (expression of Ptx or GABAB-R3-RNAi) lengthened the period of adult locomotor rhythms. Furthermore, the molecular clock in s-LNvs is disrupted when a subset of GABAergic neurons are hyper-excited. Since the LNvs do not produce GABA themselves, s-LNvs require GABAergic inputs to generate 24hr rhythms. Thus s-LNvs are less autonomous for determining period length in DD than previously anticipated (Dahdal, 2010).

    Activation of G-proteins can have both short- and long-term effects on a cell. With Go signaling blocked by Ptx, short-term effects on LNv responses were detected in response to excitatory ACh and longer-term effects on the molecular clock. The latter are presumably explained by PLC activation since the behavioral phenotypes of Pdf > GoGTP flies were rescued by reducing Plc21C expression (Dahdal, 2010).

    Since s-LNv clocks were unchanged even when the speed of all non-LNv clock neurons were genetically manipulated, it is surprising to find s-LNv clocks altered by signaling from GABAergic non-clock neurons. Why would LNvs need inputs from non-clock neurons to generate 24hr rhythms? One possibility is that LNvs receive multiple inputs which either accelerate or slow down the pace of their molecular clock but overall balance each other to achieve 24hr rhythms in DD. Since reducing signaling by Gs and Go lengthens period, these pathways normally accelerate the molecular clock. According to this model, there are unidentified inputs to LNvs which delay the clock. Identifying additional receptors in LNvs would allow this idea to be tested (Dahdal, 2010).

    Previous work showed that GABAergic neurons project to LNvs and that GABAA receptors in l-LNvs regulate sleep. The current data show that constitutive activation of Go signaling dramatically alters behavioral rhythms, suggesting that LNvs normally receive rhythmic GABAergic inputs. But how can s-LNvs integrate temporal information from non clock-containing GABAergic neurons? s-LNvs could respond rhythmically to a constant GABAergic tone by controlling GABAB-R3 activity. Indeed, a recent study found that GABAB-R3 RNA levels in s-LNvs are much higher at ZT12 than at ZT0 (Kula-Eversole, 2010). Strikingly, this rhythm in GABAB-R3 expression is in antiphase to LNv neuronal activity. Thus regulated perception of inhibitory GABAergic inputs could at least partly underlie rhythmic LNv excitability. GABAergic inputs could also help synchronize LNvs as in the cockroach circadian system. Thus GABA's short-term effects on LNv excitability, likely mediated by Gβ/γ, and GABA's longer-term effects on the molecular clock via Go may both contribute to robust rhythms (Dahdal, 2010).

    This work adds to the growing network view of circadian rhythms in Drosophila where LNvs integrate information to set period for the rest of the clock network in DD. The period-altering effects of decreased G-protein signaling in LNvs point to a less hierarchical and more distributed network than previously envisioned. Since the data strongly suggests that GABA inputs are novel regulators of 24hr rhythms, the GABAergic neurons that fine-tune the s-LNv clock should be considered part of the circadian network (Dahdal, 2010).

    GABAB receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster

    GABAergic signalling is important for normal sleep in humans and flies. This study has advance the current understanding of GABAergic modulation of daily sleep patterns by focusing on the role of slow metabotropic GABAB receptors in Drosophila. It was asked whether GABAB-R2 receptors are regulatory elements in sleep regulation in addition to the already identified fast ionotropic Rdl GABAA receptors. By immunocytochemical and reporter-based techniques it was shown that the pigment dispersing factor (PDF)-positive ventrolateral clock neurons (LNv) express GABAB-R2 receptors. Downregulation of GABAB-R2 receptors in the large PDF neurons (l-LNv) by RNAi reduced sleep maintenance in the second half of the night, whereas sleep latency at the beginning of the night that was previously shown to depend on ionotropic Rdl GABAA receptors remained unaltered. The results confirm the role of the l-LNv neurons as an important part of the sleep circuit in D. melanogaster and also identify the GABAB-R2 receptors as the thus far missing component in GABA-signalling that is essential for sleep maintenance. Despite the significant effects on sleep, no changes were observed changes in circadian behaviour in flies with downregulated GABAB-R2 receptors, indicating that the regulation of sleep maintenance via l-LNv neurons is independent of their function in the circadian clock circuit (Gmeiner, 2013).

    The fruit fly has become a well-accepted model for sleep research. As in mammals, it has been shown that the sleep-like state of Drosophila is associated with reduced sensory responsiveness and reduced brain activity, and is subject to both circadian and homeostatic regulation. Similarly to in humans, monaminergic neurons (specifically dopaminergic and octopaminergic neurons) enhance arousal in fruit flies, whereas GABAergic neurons promote sleep (Agosto, 2008). As in humans, GABA advances sleep onset (reduces sleep latency) and prolongs total sleep (increases sleep maintenance). Brain regions possibly implicated in the regulation of sleep in D. melanogaster are the pars intercerebralis, the mushroom bodies and a subgroup of the pigment dispersing factor (PDF)-positive neurons called the l-LNv neurons. The l-LNv belong to the circadian clock neurons, indicating that in flies, as in mammals, the sleep circuit is intimately linked to the circadian clock and that the mechanisms employed to govern sleep in the brain are evolutionarily ancient (Gmeiner, 2013).

    The l-LNv are conspicuous clock neurons with wide arborisations in the optic lobe, fibres in the accessory medulla -- the insect clock centre -- and connections between the brain hemispheres. Thus, the l-LNv neurons are anatomically well suited to modulate the activity of many neurons. In addition, their arborisations overlap with those of monaminergic neurons. Several studies show that they indeed receive dopaminergic, octopaminergic and GABAergic input and that they control the flies' arousal and sleep. Furthermore, the l-LNv are directly light sensitive and promote arousal and activity in response to light, especially in the morning (Gmeiner, 2013).

    A part of the sleep-promoting effect of GABA on the l-LNv has been shown to be mediated via the fast ionotropic GABAA receptor Rdl (Resistance to dieldrin) (Agosto, 2008). Rdl Cl- channels are expressed in the l-LNv (Agosto, 2008) and, similar to mammalian GABAA receptors, they mediate fast inhibitory neurotransmission. As expected, GABA application reduced the action potential firing rate in the l-LNv, whereas application of picrotoxin, a GABAA receptor antagonist, increased it (McCarthy, 2011). Furthermore, an Rdl receptor mutant with prolonged channel opening and consequently increased channel current significantly decreased sleep latency of the flies after lights-off, whereas the downregulation of the Rdl receptor via RNAi increased it (Agosto, 2008; Gmeiner, 2013 and references therein).

    Nevertheless, the manipulation of the Rdl receptor had no effect on sleep maintenance. Because the latter is significantly reduced after silencing the GABAergic neurons (Parisky, 2008), other GABA receptors must be responsible for maintaining sleep. Suitable candidates are slow metabotropic GABAB receptors that are often co-localised with ionotropic GABAA receptors (Enell, 2007). In Drosophila, like in mammals, the metabotropic GABAB receptors are G-protein-coupled seven-transmembrane proteins composed of two subunits, GABAB-R1 and GABAB-R2 (Kaupmann, 1998; Mezler, 2001). The GABAB-R1 is the ligand binding unit and GABAB-R2 is required for translocation to the cell membrane and for stronger coupling to the G-protein (Kaupmann, 1998; Galvez, 2001). This study shows that the l-LNv do express metabotropic GABAB-R2 receptors and that these receptors are relevant for sleep maintenance but not for sleep latency. Thus, metabotropic and ionotropic GABA receptors are cooperating in sleep regulation (Gmeiner, 2013).

    This study shows that metabotropic GABAB-R2 receptors are expressed on the PDF-positive clock neurons (LNv neurons), and that their downregulation in the l-LNv by RNAi results in: (1) a higher activity level throughout the day and night and (2) reduced sleep maintenance in the second half of the night. Neither sleep onset nor circadian rhythm parameters were affected by the downregulation. It is concluded that GABA signalling via metabotropic receptors on the l-LNv is essential for sustaining sleep throughout the night and for keeping activity at moderate levels throughout the 24-h day (preventing flies from hyperactivity). A major caveat of RNAi is off-target effects, particularly when Gal4 drivers are expressed in large numbers of non-target neurons. Though GABAB-R2 was downregulated in only eight neurons per brain hemisphere and the behavioural effects of the knockdown experiments were carefully correlated with observation and measures of GABAB-R2 immunostaining in the s-LNv and l-LNv, it is still possible that some effects were due to off-target knockdown of other membrane proteins. Nevertheless, given the fact that no such effects have been reported in the previous paper that used the same GABAB-R2 RNAi line (Root, 2008), it is thought unlikely that the behavioural effects described in this study were due to off-target knockdown of other genes (Gmeiner, 2013).

    The results are in line with a former study describing the location of GABAB receptors in D. melanogaster (Hamasaka, 2005). The ionotropic GABAA receptor Rdl has also been identified on the l-LNv neurons and has been shown to regulate sleep, but its downregulation delayed only sleep onset and did not perturb sleep maintenance (Parisky, 2008). In contrast, silencing GABAergic signalling influenced sleep onset and sleep maintenance, indicating that GABA works through the fast Rdl receptor, and also implying a longer-lasting signalling pathway. GABAB receptors are perfect candidates in mediating slow but longer-lasting effects of GABA. Often, GABAA and GABAB receptors cooperate in mediating such fast and slow effects. For example, in the olfactory system, GABAA receptors mediate the primary modulatory responses to odours whereas GABAB receptors are responsible for long-lasting effects (Wilson, 2005; Gmeiner, 2013 and references therein).

    In D. melanogaster, GABAB receptors consist of the two subunits GABAB-R1 and GABAB-R2, and only the two units together can efficiently activate the metabotropic GABA signalling cascade (Galvez, 2001; Mezler, 2001). In the current experiments, only GABAB-R2 was downregulated, but this manipulation should also have decreased the amount of functional GABAB-R1/GABAB-R2 heterodimers and, therefore, reduced GABAB signalling in general. Taking into account that sleep maintenance in the second half of the night was already significantly impaired by an ~46% reduction in detectable GABAB-R2 immunostaining intensity in the l-LNv clock neurons, it can be assumed that GABAB receptors account for an even larger portion of the sleep maintenance than detected in these experiments. Thus GABAB receptors play a crucial role in mediating GABAergic signals to the l-LNv neurons, which are needed to sustain sleep throughout the night. This is mainly due to the maintenance of extended sleep bout durations in the second half of the night. When signalling by the GABAB receptor is reduced, sleep bouts during this interval are significantly shortened, leading to less total sleep (Gmeiner, 2013).

    Most importantly, this study confirmed the l-LNv as important components in regulation of sleep and arousal (Agosto, 2008; Parisky, 2008; Kula-Eversole, 2010; Shang, 2011). In contrast, the s-LNv seem to be not involved in sleep–arousal regulation but are rather important for maintaining circadian rhythmicity under DD (reviewed by Helfrich-Förster, 2007). One caveat in clearly distinguishing the function of s-LNv and l-LNv is the fact that both cell clusters express the neuropeptide PDF and, as a consequence, Pdf-GAL4 drives expression in both subsets of clock neurons. Though no significant GABAB-R2 knock-down in the s-LNv is seen, it cannot be completely excluded that GABAB-R2 was slightly downregulated in these clock neurons and that this knock-down contributes to the observed alterations in sleep. To restrict the knock-down to the s-LNv the R6-GAL4 line was used that is expressed in the s-LNv but not in the l-LNv. Neither a reduction in GABAB-R2 staining intensity in the s-LNv nor any effects on sleep in the second half of the night was seen. The lack of any visible GABAB-R2 downregulation in the s-LNv with R6-GAL4 is in agreement with observations of Shafer and Taghert (Shafer, 2009), who could completely downregulate PDF in the s-LNv using Pdf-GAL4 but not using R6-GAL4. Thus, R6-GAL4 is a weaker driver than Pdf-GAL4 and is obviously not able to influence GABAB-R2 in the s-LNv. Nevertheless, in the current experiments the R6-Gal4-driven GABAB-R2 RNAi led to flies that had slightly higher diurnal activity levels and less diurnal rest than the control flies. This suggests that GABAB-R2 was downregulated somewhere else. When checking the R6-GAL4 expression more carefully it was found that R6-GAL4 was not restricted to the brain, but was also present in many cells of the thoracic and especially the abdominal ganglia. Given the broad expression of GABAB-R2, a putative knock-down in the ventral nervous system is likely to affect locomotor activity (Gmeiner, 2013).

    The results on the l-LNv certainly do not exclude a role of GABA in the circadian clock controlling activity rhythms under DD conditions (here represented by the s-LNv). In mammals, GABA is the most abundant neurotransmitter in the circadian clock centre in the brain -- the suprachiasmatic nucleus. GABA interacts with GABAA and GABAB receptors, producing primarily but not exclusively inhibitory responses through membrane hyperpolarisation. GABA signalling is important for maintaining behavioural circadian rhythmicity, it affects the amplitude of molecular oscillations and might contribute to synchronisation of clock cells within the suprachiasmatic nucleus. The same seems to be true for fruit flies. The s-LNv neurons of adults alter cAMP levels upon GABA application on isolated brains in vitro (Lelito, 2012). Hyperexcitation of GABAergic neurons disrupts the molecular rhythms in the s-LNv and renders the flies arrhythmic (Dahdal, 2010). Thus, GABA signalling affects the circadian clock in the s-LNv. Flies with downregulated GABAB-R2 receptors were found to have slightly longer free-running periods than the control flies, but this turned out to be only significant in comparison with Control 2 and not to Control 1. Dahdal (2010) found similar small effects on period after downregulating GABAB-R2 receptors, but a significant period lengthening after downregulating GABAB-R3 receptors. This indicates that GABA signals via GABAB-R3 receptors to the s-LNv and was confirmed in vitro in the larval Drosophila brain by Ca2+ imaging (Dahdal, 2010). Nevertheless, the study of Dahdal does not rule out that GABA signals via GABAB-R3 plus GABAB-R2 receptors on the adult s-LNv. This study found a rather strong expression of GABAB-R2 receptors in these clock neurons, and were not able to downregulate it significantly by RNAi, although dicer2 was used as amplification. Dahdal did not use dicer2, and they also did not measure the effectiveness of the downregulation of GABAB-R2 by RNAi immunocytochemically directly in the s-LNv. Thus, the exact GABAB receptors that mediate GABA responses in the adult s-LNv need still to be determined (Gmeiner, 2013).

    In summary, it is concluded that the l-LNv subgroup of the PDF-positive clock neurons is a principal target of sleep-promoting and activity-repressing GABAergic neurons and sits at the heart of the sleep circuit in D. melanogaster. Thus, the sleep circuitry of flies is clearly more circumscribed and simpler than that of mammals. Mammals have many targets of sleep-promoting GABAergic neurons, and the circadian clock seems to have a mainly modulatory and less direct influence on sleep (Mistlberger, 2005). The fly sleep circuitry may therefore have condensed the mammalian arousal and sleep stimulating systems (e.g., monaminergic, cholinergic, peptidergic and GABAergic systems) into a simpler and more compact region, which seems to largely coincide with the eight PDF-positive l-LNv cells of the circadian circuit (Gmeiner, 2013).

    Balance of activity between LNvs and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila

    Circadian rhythms offer an excellent opportunity to dissect the neural circuits underlying innate behavior because the genes and neurons involved are relatively well understood. This study sought to understand how Drosophila clock neurons interact in the simple circuit that generates circadian rhythms in larval light avoidance. Genetics was used to manipulate two groups of clock neurons, increasing or reducing excitability, stopping their molecular clocks, and blocking neurotransmitter release and reception. The results revealed that lateral neurons (LNvs) promote and dorsal clock neurons (DN1s) inhibit light avoidance, these neurons probably signal at different times of day, and both signals are required for rhythmic behavior. Similar principles apply in the more complex adult circadian circuit that generates locomotor rhythms. Thus, the changing balance in activity between clock neurons with opposing behavioral effects generates robust circadian behavior and probably helps organisms transition between discrete behavioral states, such as sleep and wakefulness (Collins, 2012).

    This study identified some of the network logic that helps generate a simple rhythmic behavior through precise genetic manipulations of the larval circadian circuit and extended these findings to the more complex adult circadian network. Previous studies have shown that intercellular signaling in clock neuron networks promotes molecular clock synchrony and can strengthen genetically weak molecular clocks. This study increases the importance of circadian neural networks by finding that non-LNv clock neurons are as important as the 'master' pacemaker LNv clock neurons for rhythmic behavior both in larvae and adult flies. However, LNvs can still be considered pacemakers in DD because most manipulations to non-LNv clock neurons do not affect period length (Collins, 2012).

    Non-LNv signals appear to gate pacemaker neuron activity. Why is this necessary when LNvs have their own intrinsic excitability rhythms? It is proposed that the interaction of two oscillators with opposite signs helps reduce the time when LNvs signal. Without signaling from non-LNvs, adult locomotor activity rhythms are weak and activity is distributed throughout the day and night as in tim-Gal4; Pdf-Gal80 > dORKΔC flies. In contrast, in tim-Gal4; Pdf-Gal80 > NaChBac flies, the timing of locomotor activity is narrowed. Thus, the gating of LNv activity by non-LNvs may help turn gradual changes in the excitability of each neuronal group into thresholds that promote a switch in overall output and allow flies to abruptly transition from inactivity to activity (Collins, 2012).

    This gating system can only function if LNvs and non-LNvs have differently phased neuronal activity. However, most Drosophila clock neurons have similarly phased molecular clocks. It is proposed that molecular clocks in different clock neurons regulate divergent sets of output genes to generate distinct phases of neuronal excitability. This would be analogous to the mammalian circadian system, in which molecular clocks in different tissues drive tissue-specific outputs. In summary, this genetic dissection of a circadian neural circuit reveals an unexpected and essential role for inhibitory signals from non-LNvs (E cells) in shaping activity profiles at dawn and a mechanism for how clock neurons couple together to promote robust rhythms (Collins, 2012).

    Identification of a circadian output circuit for rest:activity rhythms in Drosophila

    Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. A screen was conducted for circadian-relevant neurons in the Drosophila brain, and this study reports that cells of the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GFP reconstitution across synaptic partners (GRASP) analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin-releasing factor (CRF) homolog, DH44, as a circadian output molecule that is specifically expressed by PI neurons and is required for normal rest:activity rhythms. Notably, selective activation or ablation of just six DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms (Cavanaugh, 2014).

    Given its location near the axonal projections of several groups of clock neurons and its function in metabolic, locomotor, and sleep processes, the PI has been proposed as a possible component of the output pathway in Drosophila, but direct evidence supporting a contribution to behavioral or physiological rhythms has been lacking. This study used a combined genetic, anatomical, and molecular approach to unequivocally identify specific subsets of PI cells as comprising part of the circadian output circuit for rest:activity rhythms. Ectopic activation of PI neurons is sufficient to induce behavioral arrythmicity, and similarly, ablation of small subsets of PI neurons results in loss of rest:activity rhythms. This latter result is consistent with previous studies showing that surgical destruction of the PI in both crickets and cockroaches results in loss of locomotor rhythms. It was further shown that manipulations of the PI that result in behavioral arrhythmicity do not affect the underlying molecular clock in s-LNvs, thus demonstrating that the PI exerts its effects downstream of clock neurons (Cavanaugh, 2014).

    Importantly, this study has uncovered a segregation of different behavioral and physiological outputs by specific neurons of the PI. Thus, kurs58-GAL4+ PI neurons function to modulate locomotor behavior, whereas insulin-like peptide-producing PI cells, which constitute a nonoverlapping subset, influence metabolic processes. It will be of interest to determine whether Dilp2+ cells are also modulated by the clock, because such a result would suggest that the PI is a common relay for multiple circadian output circuits that couple to unique physiological functions, each subserved by discrete subpopulations of PI neurons. Furthermore, within kurs58-GAL4+ cells, there appear to be at least two subsets of neurons that contribute to rest:activity cycles. Interestingly, ablation of the SIFa-GAL4+ subset results in reduced rhythmicity, accompanied by decreases in sleep, whereas ablation of the DH44VT-GAL4+ subset also results in reduced rhythmicity, but in this case, the effect on sleep, if any, is an increase. Thus, it is possible that these two molecularly distinct populations control behavioral rhythms through opposing effects on locomotion and/or sleep, and thus, that the contribution of a particular subset predominates depending on time of day (Cavanaugh, 2014).

    In conjunction with behavioral studies, GRASP analysis was used to trace neuronal connections emanating from the clock network. It was found that s-LNvs, which function as master pacemakers, make limited connections within the clock cell network and do not appear to directly access output cells of the PI. Instead, PI output cells receive time-of-day information through inputs from DN1 clock cells, as demonstrated by the fact that presynaptic components of DN1 cells adjoin dendrites of PI neurons, in the same brain region where GRASP analysis reveals cellular contacts between these two cell groups. Several studies corroborate a function of DN1 neurons downstream of s-LNvs to mediate rest:activity rhythms. Dorsal neurons are responsive to bath application of PDF, and restoration of the PDF receptor selectively in these neurons of pdfr mutant flies is sufficient to rescue multiple aspects of circadian locomotor rhythms. Furthermore, speeding up the molecular clock in s-LNvs causes concomitant acceleration of molecular cycling in several groups of dorsal neurons, including DN1s. These experiments, along with the current study, argue that DN1 neurons serve an important output function within the clock network and likely reside downstream of s-LNvs in the output circuit for rest:activity rhythms. The data are therefore consistent with a very simple circadian output circuit, in which time-of-day information from the clock network, which is generated by master pacemaker cells (s-LNvs and possibly LNds), passes through dorsal clock neurons (including DN1s) before accessing downstream output neurons of the PI, which then integrate these signals to modulate locomotor rhythms. Whether the PI also lies downstream of other groups of dorsal clock neurons, in addition to DN1s, or whether all time-of-day signals received by the PI pass through DN1 cells remains to be determined (Cavanaugh, 2014).

    Within the brain, projections from the PI primarily terminate in the dorsal tritocerebrum; however, more diffuse termination patterns throughout the central brain and optic lobes have been observed for SIFa+ PI neurons. The PI also accesses neurohemal organs via the esophageal canal, as well as directly releasing peptides into the hemolymph. Thus, signals released from the PI could either act within neuronal tissue or systemically via release of peptide neurotransmitters and other hormones. The latter possibility is consistent with studies that showed that transplantation of pers brains into the abdomen of per mutant flies rescued locomotor rhythms, demonstrating that release of a secreted factor underlies brain control of rest:activity rhythms in flies. Similarly, abdominal transplantation of PI cells is sufficient to alter sexually dimorphic locomotor patterns, indicating that the PI can modulate locomotor behavior in a neuroendocrine manner (Cavanaugh, 2014).

    Through single-cell transcriptome analysis, the CRF-like peptide, DH44, was identified as a candidate molecule through which PI neurons might influence locomotor behavior. Consistent with this possibility, RNAi-mediated knockdown, or genetic antagonism, of DH44 resulted in altered locomotor behavior and weakened rest:activity rhythms. In addition, selective activation or destruction of DH44+ PI neurons also substantially weakened rest:activity rhythms. In flies, DH44 acts as a diuretic hormone, which stimulates fluid secretion from Malpighian tubules through a cyclic AMP (cAMP) pathway. Its role as a stress molecule is less clear, but DH44 receptor has also been localized to corazonin+ cells of the lateral protocerebrum, which may be involved in the stress response of the fly. Notably, manipulations of neuronal excitability in corazonin+ cells alter stress-induced locomotor activity. In mammals, stress hormones, such as glucocorticoids, show diurnal cycles of secretion and serve as entrainment signals for peripheral clocks. Thus, stress hormones may play a conserved role in circadian regulation of behavioral and physiological processes (Cavanaugh, 2014).

    Light-induced structural and functional plasticity in Drosophila larval visual system

    How to build and maintain a reliable yet flexible circuit is a fundamental question in neurobiology. The nervous system has the capacity for undergoing modifications to adapt to the changing environment while maintaining its stability through compensatory mechanisms, such as synaptic homeostasis. This study describes findings in the Drosophila larval visual system, where the variation of sensory inputs induces substantial structural plasticity in dendritic arbors of the postsynaptic neuron and concomitant changes to its physiological output. Furthermore, a genetic analysis has identified the cyclic adenosine monophosphate (cAMP) pathway and a previously uncharacterized cell surface molecule as critical components in regulating experience-dependent modification of the postsynaptic dendrite morphology in Drosophila (Yuan, 2011).

    Proper functions of neuronal circuits rely on their fidelity, as well as plasticity, in responding to experience or changing environment, including the Hebbian form of plasticity, such as long-term potentiation, and the homeostatic plasticity important for stabilizing the circuit. Activity-dependent modification of neuronal circuits helps to establish and refine the nervous system and provides the cellular correlate for cognitive functions, such as learning and memory. Multiple studies have examined synaptic strength regulation by neuronal activity, whereas to what extent and how the dendritic morphology may be modified by neuronal activity remain open questions (Yuan, 2011).

    The model organism Drosophila melanogaster has facilitated genetic studies of nervous system development and remodeling. Notwithstanding the relatively stereotyped circuitry, flies exhibit experience-induced alterations in neuronal structures and behaviors such as learning and memory). In a study of experience-dependent modifications of the Drosophila larval CNS, it has been found that different light exposures dramatically altered dendritic arbors of ventral lateral neurons [LN(v)s], which are postsynaptic to the photoreceptors. Unlike the visual activity-induced dendrite growth in Xenopus optic tectum, extending the light exposure of Drosophila larvae reduced the LN(v)s' dendrite length and functional output, a homeostatic plasticity for compensatory adaptation to alterations in sensory inputs. It was further shown that the cyclic adenosine monophosphate (cAMP) pathway and an immunoglobulin domain-containing cell surface protein, CG3624, are critical for this sensory experience-induced structural plasticity in Drosophila CNS (Yuan, 2011).

    In Drosophila larvae, Bolwig's organ (BO) senses light, and its likely postsynaptic targets are LN(v)s. As the major circadian pacemaker, LN(v)s are important for the entrainment to environmental light-dark cycles and larval light avoidance behavior. In the larval brain, Bolwig's nerve (BN), the axonal projection from BO, terminates in an area overlapping the dendritic field of LN(v)s. Using the FRT-FLP system [in which DNA sequences flanked by flippase recognition targets (FRT) are snipped out by flippase (FLP)] along with three-dimensional (3D) tracing, the dendritic arbor of individual LN(v) neurons were labeled and analyzed. Then potential synaptic connections were demonstrated between BN and LN(v)s using the GRASP [green fluorescent protein (GFP) reconstitution across synaptic partners] technique to drive expression of one-half of the split GFP in the BN by means of Gal4/UAS and expression of the other half of the split GFP in LN(v)s via LexA/LexAop. The proximity of putative synaptic connections between BN and LN(v)s' dendrites reconstituted GFP fluorescence for photoreceptors expressing either rhodopsin 5 (Rh5) or rhodopsin 6 (Rh6) in BO, which suggested that both groups of photoreceptors may have synaptic connections with LN(v)s (Yuan, 2011).

    To test whether LN(v)s can be activated by BN inputs through light stimulation, calcium imaging was performed using GCaMP3 transgenic flies with the larval brain-eye preparation, which included BO, BN, developing eye disks, the larval brain, and ventral nerve cord. Because BO senses blue and green light, the confocal laser at 488 nm (blue) and 543 nm (green) were used to stimulate these larval photoreceptors. LN(v)s' axon terminals displayed a relatively stable baseline of GCaMP3 fluorescence and, upon light stimulation, yielded large calcium responses, which increased with the greater intensity and longer duration of the light pulses (Yuan, 2011).

    Recent studies suggest that Cryptochrome (CRY) in adult large LN(v)s senses light and elicits neuronal firing. In larvae, however, severing BN abolished light-induced calcium responses in LN(v)s. The loss-of-function mutation of NorpA (no-receptor-potential A), encoding a phospholipase C crucial for phototransduction, also eliminated these calcium responses, which indicated that light-elicited responses in LN(v)s are generated via phototransduction in larval photoreceptors rather than as a direct response to light by LN(v)s (Yuan, 2011).

    In animals with BO genetically ablated, the dendritic field of LN(v) is absent. To test whether BO is required for LN(v)s' dendrite maintenance, the expression of cell death genes rpr and hid was induced in BO after synapse formation, and the LN(v) dendrite length was also found to be greatly reduced. Whereas physical contacts with BN or growth-promoting factors released from presynaptic axons could be important for LN(v)s' dendrite maintenance, it is also possible that synaptic activity from BN promotes LN(v) dendrite growth, as suggested by previous studies. To explore the latter scenario, newly hatched larvae were provided with different visual experiences through various light regimes—including the standard 12 hours of light and 12 hours of dark daily cycle (LD); constant darkness (DD) for sensory deprivation; constant light (LL) for enhanced light input; 16-hour light and 8-hour dark cycle, mimicking a long day; and 8-hour light and 16-hour dark cycle, mimicking a short day. The dendrite morphology of LN(v)s of late third instar larvae was examined. Whereas different light exposure had no detectable effects on larval developmental timing, increasing light exposure reduced the total dendrite length of individual LN(v) neurons, with the longest dendrite in constant darkness and the shortest dendrite length in constant light condition. Thus, not only is the LN(v) dendrite dependent on the presence of presynaptic nerve fibers, its length is modified by the sensory experience in a compensatory fashion, whereby an increase in sensory inputs causes a reduction in the dendrite length and vice versa (Yuan, 2011).

    Whereas adult LN(v)s alter their axon terminal structures in a circadian cycle-controlled fashion, no difference was found in dendrite morphology of LN(v)s from larvae collected at four different time points around the clock, which indicated that circadian regulation is not involved in the light-induced modification of LN(v) dendrites. Under regular light-dark conditions, LN(v) dendrites expanded as the larval brain size increased from the second to the third instar stage. However, the dendrite length of the LL group increased at a significantly slower rate than the DD group. It thus appears that light exposure retards the growth of LN(v) dendrites throughout the larval development (Yuan, 2011).

    To test the contribution of different light-sensing pathways, loss-of-function mutations of Cry (cry01) or NorpA (norpA36) and of double mutants lacking both Rh5 and Rh6 (rh52;rh61) were examined. Although wild-type and cry01 larvae displayed differences in their dendrite length when exposed to constant darkness versus constant light, such light-induced changes were absent in the rh52;rh61 double mutant and the norpA36 mutant. Thus, similar to the calcium response to light, light-induced modification of LN(v) dendritic structure requires visual transduction mediated by rhodopsin and NorpA in BO but not Cry function in LN(v)s (Yuan, 2011).

    To manipulate the level of synaptic activity, the BO excitability was weither increased by expressing the heat-activated Drosophila transient-receptor-potential A1 (dTrpA) channel, or transmitter release from BN was reduced through a temperature-sensitive form of the dominant-negative dynamin, Shibirets (Shits). These manipulations eliminated light-induced modification of LN(v) dendrites at 29°C. Reducing BO activity by means of Shits caused dendrite expansion, as if the animal detected no light, whereas increasing BO activity by means of the dTrpA channel resulted in reduction of LN(v) dendrites, a process reminiscent of constant light exposure (Yuan, 2011).

    Whether intrinsic LN(v) neuronal activity drives modification of its dendrite morphology was further tested by expression of either the sodium channel NaChBac to increase excitability or the potassium channel Kir2.1 to reduce excitability. LN(v)s expressing Kir2.1 showed reduced or no calcium responses upon light stimulation. In contrast, LN(v)s expressing NaChBac displayed numerous peaks in GCaMP3 signals in the presence or absence of light stimulation, indicative of elevated spontaneous activities. Upon examining LN(v) dendrites, it was found that neuronal excitability of the LN(v) was inversely proportional to its dendrite length (Yuan, 2011).

    These results obtained using genetic approaches agreed with findings in experiments with different environmental light conditions. They suggested that LN(v)'s dendritic structures are modified according to its neuronal activity, which varies with light-induced synaptic inputs (Yuan, 2011).

    To test whether synaptic contacts of BN on LN(v)s are modified by light, synapses formed by BN with EGFP (enhanced green fluorescent protein)-tagged Cacophony (Cac-EGFP) were marked, because Cacophony is a calcium channel localized at presynaptic terminals and its distribution correlates with the number of synapses. Close association was found of Cac-EGFP-expressing structures with LN(v)s' dendritic arbors. Compared with regular light-dark conditions, constant darkness increased, whereas constant light reduced, the total intensity of Cac-EGFP, which suggested that light modified not only dendritic arbors of LN(v)s but also the number of synaptic contacts impinging on LN(v) dendrites (Yuan, 2011).

    Next, using calcium imaging, whether there are light-induced functional modifications of LN(v)s was examined. Increased light exposure caused LN(v)s to be less responsive. Conversely, sensory deprivation in constant darkness increased LN(v)s' sensitivity to light. Thus, in contrast to stable synaptic responses observed in synaptic homeostasis, light-induced responses of central neurons postsynaptic to photoreceptors in the Drosophila larval visual circuit have a dynamic range, modifiable by sensory experiences and positively correlated to the dendrite length (Yuan, 2011).

    In dunce1, a loss-of-function mutant of the fly homolog of 3'5'-cyclic nucleotide phosphodiesterase, the LN(v)s' dendrite length was comparable among LD, LL, and DD groups. Reducing dunce gene expression specifically in LN(v)s through RNA interference (dncIR) resulted in a similar indifference of LN(v)s' dendrite size to the light exposure, which implicated a cell-autonomous action of dunce in LN(v) neurons (Yuan, 2011).

    To explore the possibility that the elevated cAMP level caused by the dunce mutation interfered with dendrite plasticity, tests were performed for the involvement of downstream components of the cAMP pathway, including the catalytic subunit of protein kinase A (PKAmc), which up-regulates cAMP signaling, and a dominant-negative form of the cAMP response element-binding protein (CREBdn), which inhibits cAMP-induced transcription activation. Expression of either transgene specifically in LN(v)s obliterated their ability to adjust dendrite length under different light-dark conditions. Calcium imaging further revealed that the expression of PKAmc or CREBdn eliminated changes of LN(v)s' light responses produced by different light-dark conditions. Thus, the cAMP pathway regulates both structural and functional plasticity of LN(v)s (Yuan, 2011).

    The screen for mutants with defective LN(v) dendritic plasticity also identified babos-1, a mutant with a P-element insertion near the transcriptional start site of CG3624, a previously uncharacterized immunoglobulin domain-containing cell surface protein. The LN(v) dendrite length of babos-1 mutant larvae was comparable to controls in LD and LL but has no compensatory increase in DD. Similar phenotypes were found in larvae expressing an RNAi transgene targeting CG3624 in LN(v)s. Moreover, flies carrying a hypomorphic allele of CG3624, CG3624[KG05061], also showed defective light-induced dendritic plasticity, which was fully rescued by expressing the UAS-CG3624 transgene specifically in LN(v)s. Thus, the function of this immunoglobulin domain-containing protein in LN(v)s is important for the dendrite expansion in constant darkness (Yuan, 2011).

    Bioinformatic analyses suggest that CG3624 is a cell surface protein containing an N-terminal signal peptide, extracellular immunoglobulin domains followed by a transmembrane helix, and a short C-terminal cytoplasmic tail. CG3624 is widely expressed in the nervous system throughout development. Its specific requirement for the adjustment of LN(v)s' dendrite length in constant darkness suggests that elevation or reduction of sensory inputs likely invokes separate mechanisms for compensatory modifications of central neuronal dendrites (Yuan, 2011).

    A functioning nervous system must have the capacity for adaptive modifications while maintaining circuit stability. This study of the Drosophila larval visual circuit reveals large-scale, bidirectional structural adaptations in dendritic arbors invoked by different sensory exposure. Whereas the circuit remains functional with modified outputs, this type of homeostatic compensation may modify larval light sensitivity according to its exposure during development and could facilitate adaption of fly larvae toward altered light conditions, such as seasonal changes. The observations also suggest shared molecular machinery between homeostasis and the Hebbian plasticity with respect to the cAMP pathway and indicate the feasibility of genetic studies of experience-dependent neuronal plasticity in Drosophila (Yuan, 2011).

    Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs

    Circadian rhythms regulate physiology and behavior through transcriptional feedback loops of clock genes running within specific pacemaker cells. In Drosophila, molecular oscillations in the small ventral lateral neurons (sLNvs) command rhythmic behavior under free-running conditions releasing the neuropeptide Pigment Dispersing Factor (PDF) in a circadian fashion. Electrical activity in the sLNvs is also required for behavioral rhythmicity. Yet, how temporal information is transduced into behavior remains unclear. This study developed a new tool for temporal control of gene expression to obtain adult-restricted electrical silencing of the PDF circuit, which led to reversible behavioral arrhythmicity. Remarkably, Period (Per) oscillations during the silenced phase remained unaltered, indicating that arrhythmicity is a direct consequence of the silenced activity. Accordingly, circadian axonal remodeling and PDF accumulation were severely affected during the silenced phase. It is concluded that although electrical activity of the sLNvs is not a clock component, it coordinates circuit outputs leading to rhythmic behavior (Depetris-Chauvin, 2011).

    Work from many laboratories has shaped the current view of the molecular clockworks. Although the relative contribution of specific molecular mechanisms is still a matter of debate, it is clear that a transcriptional and translational negative feedback loop is key to give rise to and sustain molecular oscillations. Years ago it was proposed that circadian oscillations arise from interactions between ion transport systems across the cell membrane and the resulting ion concentration gradients. In fact, in support of such possibility, electrical silencing of a key pacemaker circuit in Drosophila stopped the free-running clock both in the larval and adult brains, leading to the proposition that active ionic conductances are an essential component of this cellular mechanism. One potential caveat of those experiments is that they rely on the long-term expression of ion channels from early circuit development, which could not only trigger compensatory mechanisms to avoid net changes in excitability but also trigger cell death (Depetris-Chauvin, 2011).

    To more precisely examine the connection between the membrane and the molecular clock, expression of an inward rectifier K+ channel (KIR) was restricted to adult stages. Such genetic manipulation rendered the flies as behaviorally arrhythmic as those expressing the channel from early circuit development and prevented action potential firing to a similar extent. Interestingly, however, no effects were observed in the pace of the molecular oscillations after several days under free-running conditions (i.e., on DD4, and even in DD9), which, along with the reversibility observed once kir 2.1 expression was turned off in several affected outputs (free-running locomotor behavior, PDF immunoreactivity), strongly support the notion of an unaltered molecular clock during the silenced phase. In favor of an alternative interpretation of the original observations, a rundown in the molecular oscillations - and even no oscillations whatsoever - was noticed after prolonged KIR expression, opening the possibility that long-term changes on intrinsic properties of the neurons, likely through the alteration of second messenger cascades, as it has been shown in a different but also extreme condition, ultimately impinge upon cell viability and thus indirectly result in abnormal clock function. In fact, adult-restricted silencing of the PDF circuit triggered morphological changes in second order processes, giving rise to a less complex arborization pattern; it follows that a more severe treatment, such as long-term KIR expression, could result in stronger structural phenotypes indicative of defective cell physiology (Depetris-Chauvin, 2011).

    In addition, constantly low PDF levels could potentially account for the progressive run-down in molecular oscillations. Along this line it has been shown that, in the absence of PDF, the sLNvs eventually desynchronize, becoming evident by DD6. Because acute electrical silencing of PDF neurons clamps the neuropeptide to trough levels that are insufficient to sustain synchronicity in dorsal oscillators, affecting excitability for longer terms could eventually result in reduced amplitude oscillations and internal desynchronization in central pacemakers. In the mammalian SCN, evidence from different laboratories has lent support to the notion that membrane excitability or, more precisely, a certain degree of depolarization and activation of Ca2+ and cAMP second messenger cascades, may be required for sustained molecular oscillations. These observations underscore that intercellular communication is important to reinforce high amplitude molecular oscillations through synchronization of independent cellular oscillators, as opposed to being an essential component within the mechanism responsible for the generation of the molecular oscillations. Interestingly, it has been reported that, in a subset of SCN neurons, molecular oscillations of a circadian reporter still take place even in the absence of synaptic connectivity, highlighting the autonomy of the molecular oscillator (Depetris-Chauvin, 2011).

    Adult-restricted silencing of the PDF circuit impairs locomotor behavior to a similar extent compared to constitutively silencing them, demonstrating that regardless of the overall levels of KIR achieved through the inducible system, short-term expression effectively prevents communication with other neuronal targets. Such a scenario offers the possibility to identify the direct consequences of reducing the excitability of the PDF circuit in a defined temporal window. Surprisingly, despite kir expression being limited to the adult brain, it correlated with axonal arbors of reduced complexity throughout the day in the dorsal protocerebrum, even though the circadian remodeling phenomenon continued to take place. The latter lends further support to the notion that no effect on the pace of the molecular oscillator became evident during the acutely silenced phase (Depetris-Chauvin, 2011).

    In addition, adult-restricted silencing correlated with noncycling PDF levels. PDF is transported along the axonal tract in large dense core vesicles (DCV), which apparently are released outside of the chemical synapse. Although no precise information is available on PDF, it is expected for neuropeptides to be released after high frequency stimulation, suggesting that during the silenced phase, the DCV would accumulate in the axonal terminals. It has been proposed that the trough of PDF accumulation at dusk might represent the depletion of the PDF readily releasable pool, and it correlates with the time of day when the sLNvs are most hyperpolarized. Interestingly, despite no release expected to occur while KIR is expressed, PDF intensity at the axonal terminals stayed at trough levels throughout the day, underscoring that reduced excitability affected additional steps such as peptide synthesis, processing, or transport. In favor of this possibility, hyperexcitation of the PDF circuit correlates with constantly high (daytime) PDF levels at the dorsal protocerebrum. Moreover, once kir expression was turned off, PDF levels resume to cycle, indicating a direct modulatory effect of membrane excitability on this specific output. In line with a defective output from the sLNvs, desynchronization of dorsal oscillators (i.e., the DN1s) became evident as early as in DD4. Gaining more insight into the mechanisms of communication within the circadian network, as well as those connecting the cell membrane with the molecular clock, will provide a better understanding on how these components interact to sustain temporal and spatial order to shape rhythmic overt behavior (Depetris-Chauvin, 2011).

    Taken together, these results confirm that in Drosophila, altering membrane excitability mainly affects the output of pacemaker cells and thus intercellular communication, as is the case in the eye of the mollusk Bulla and the rodent SCN, highlighting the degree of conservation in the mechanisms underlying the biological clock in distant organisms (Depetris-Chauvin, 2011).

    Circadian rhythm of temperature preference and its neural control in Drosophila

    A daily body temperature rhythm (BTR) is critical for the maintenance of homeostasis in mammals. Whereas mammals use internal energy to regulate body temperature, ectotherms typically regulate body temperature behaviorally. Some ectotherms maintain homeostasis via a daily temperature preference rhythm (TPR), but the underlying mechanisms are largely unknown. This study shows that Drosophila exhibit a daily circadian clock-dependent TPR that resembles mammalian BTR. Pacemaker neurons critical for locomotor activity are not necessary for TPR; instead, the dorsal neuron 2 s (DN2s), whose function was previously unknown, is sufficient. This indicates that TPR, like BTR, is controlled independently from locomotor activity. Therefore, the mechanisms controlling temperature fluctuations in fly TPR and mammalian BTR may share parallel features. Taken together, these results reveal the existence of a novel DN2-based circadian neural circuit that specifically regulates TPR; thus, understanding the mechanisms of TPR will shed new light on the function and neural control of circadian rhythms (Kaneko, 2012).

    Drosophila exhibit a daily TPR-low in the morning, high in the evening-that follows a similar pattern as in humans. This study is not only the first demonstration of fly TPR, but also the first systematic analysis of the molecular and neural mechanisms underlying TPR. TPR is controlled by the DN2s, which might explain why temperature preference remains rhythmic in LL. The DN2s do not express CRYPTOCHROME (CRY), a blue-light sensor crucial for circadian photoreception. Arrhythmicity in LL is caused by constant activation of CRY and thus constant degradation of Tim. Therefore, CRY-negative DN2 neurons may maintain residual rhythms in LL for a longer period of time than CRY-positive circadian neurons. To explore this possibility, immunostaining of brains were performed with Tim-antibody, and the staining levels of DN2 cells were analyzed in LL 4 days. Although Tim signal was found to be weakly rhythmic in DN2 neurons, these oscillations were not statistically significant. Further studies will thus be needed to verify that DN2 neurons maintain residual rhythm in LL. Because locomotor activity is controlled by CRY-positive circadian neurons and rapidly becomes arrhythmic in LL, the maintenance of TPR rhythms in LL also supports the conclusion that locomotor activity and TPR are controlled by independent circadian neural pathways (Kaneko, 2012).

    The data reveal striking parallel features between fly TPR and mammalian BTR, although the modes of heat production are not the same. Flies exhibit robust temperature increases during the daytime, which is the same phenomenon as diurnal mammalian BTR. Furthermore, ablation studies in rats show that BTR is controlled by SCN neurons that target a different subset of subparaventricular zone neurons than those that control locomotor activity. Thus, both fly TPR and mammalian BTR exhibit circadian clock dependent temperature fluctuations, independently regulated from locomotor activity. Taken together, these data raises the possibility that mammalian BTR and fly TPR are evolutionally conserved, which may be because temperature fluctuation in an animal's body is fundamental for maintenance of its homeostasis (Kaneko, 2012).

    Why do flies exhibit TPR? Flies probably exhibit TPR primarily to maintain homeostasis, like mammals. Mammalian BTR has been shown to have a clear interaction with sleep, and it has been reported that mechanisms controlling fly sleep are analogous to those controlling mammalian sleep. Therefore, fly TPR may also have a relationship with sleep. Intriguingly, it was observed that PER expression limited to pdf neurons can generate a weak TPR with an abnormal phase in per01 mutants, suggesting that pdf neurons may have a role in the TPR circuits. pdf-positive (sLNv and lLNv) neurons regulate sleep and sLNvs are known to project near the DN2s. Therefore, pdf neurons may be able to modulate DN2 activity even when these neurons are arrhythmic and may represent the neural basis for an interaction between TPR and sleep (Kaneko, 2012).

    Additionally, TPR may provide feedback to circadian pacemakers. Ambient temperature fluctuations can entrain not only peripheral clocks in mammals and flies but also circadian pacemaker neurons in the fly brain, which contribute to morning and evening locomotor activity. Because TPR can generate temperature fluctuations in the fly body, the output of TPR may thus reinforce or refine circadian rhythm entrainment. For circadian locomotor behavior, the DN2s could actually participate in the reinforcement, because in the larval brain the DN2s help the sLNvs entraining to temperature cycles. Therefore, by further exploring this newly discovered circadian rhythm, Drosophila TPR might not only help understanding the mechanisms underlying body temperature control in animals but also contribute to a greater understanding of circadian rhythm's mammalian CSLs plasticity (Kaneko, 2012).

    Natural populations of Drosophila melanogaster reveal features of an uncharacterized circadian property: the lower temperature limit of rhythmicity

    Most cyclic biological processes are under control of a circadian molecular timing system that synchronizes these phenomena to the 24-h day. One generic property of circadian-controlled processes is that they operate within a specific temperature range, below which the manifestation of rhythm ceases. Little is known about the evolutionary relevance of the lower temperature limit of rhythmicity or about the mechanism underlying the loss of overt circadian behavior below this lower limit, especially in one model organism of chronobiology, Drosophila melanogaster. Natural populations of Drosophila are evolving under divergent selection pressures and so provide a source of diversity necessary to address these issues. Using lines derived from African populations, this study found that there is natural variation in the expression of rhythmic behavior under low-temperature conditions. Evidence was found that this variability is evolutionarily relevant at extremely low temperature (12 degrees C) because high-altitude populations exhibit selection for locally adapted genomes that contribute to rhythmic behavior. Lines resistant to 15 degrees C show an additional layer of diversity in their response to temperature extremes because some lines are resistant to low temperature (15 degrees C) only, whereas others are cross-resistant to high and low temperature (15 degrees C and 30 degrees C). Genetic analysis of one cold-resistant circadian line at 15 degrees C reveals that the phenotype maps to the X-chromosome but not to the core clock genes, per and sgg. Analysis of the central clock cells of this line reveals that maintenance of rhythm is associated with robust clock function, which is compromised in a standard laboratory strain. These data indicate that the cold-resistant circadian phenotype is clock based. This study highlights the importance of using natural populations to inform us of the basic features of circadian traits, especially those that might be under temperature-based selection (Maguire, 2014).

    Unexpected features of Drosophila circadian behavioural rhythms under natural conditions

    Circadian clocks have evolved to synchronize physiology, metabolism and behaviour to the 24-h geophysical cycles of the Earth. Drosophila melanogaster's rhythmic locomotor behaviour provides the main phenotype for the identification of higher eukaryotic clock genes. Under laboratory light-dark cycles, flies show enhanced activity before lights on and off signals, and these anticipatory responses have defined the neuronal sites of the corresponding morning (M) and evening (E) oscillators. However, the natural environment provides much richer cycling environmental stimuli than the laboratory, so this study sought to examine fly locomotor rhythms in the wild. Several key laboratory-based assumptions about circadian behaviour are not supported by natural observations. These include the anticipation of light transitions, the midday 'siesta', the fly's crepuscular activity, its nocturnal behaviour under moonlight, and the dominance of light stimuli over temperature. Also, a third major locomotor component in addition to M and E, which was termed 'A' (afternoon). Furthermore, it was shown that these natural rhythm phenotypes can be observed in the laboratory by using realistic temperature and light cycle simulations. The results suggest that a comprehensive re-examination of circadian behaviour and its molecular readouts under simulated natural conditions will provide a more authentic interpretation of the adaptive significance of this important rhythmic phenotype. Such studies should also help to clarify the underlying molecular and neuroanatomical substrates of the clock under natural protocols (Vanin, 2012).

    Short neuropeptide f is a sleep-promoting inhibitory modulator

    To advance the understanding of sleep regulation, a screen was performed in Drosophila for sleep-promoting cells, and neurons expressing neuropeptide Y-like short neuropeptide F (sNPF) were identifed. Sleep induction by sNPF meets all relevant criteria. Rebound sleep following sleep deprivation is reduced by activation of sNPF neurons, and flies experience negative sleep rebound upon cessation of sNPF neuronal stimulation, indicating that sNPF provides an important signal to the sleep homeostat. Only a subset of sNPF-expressing neurons, which includes the small ventrolateral clock neurons, is sleep promoting. Their release of sNPF increases sleep consolidation in part by suppressing the activity of wake-promoting large ventrolateral clock neurons, and suppression of neuronal firing may be the general response to sNPF receptor activation. sNPF acutely increases sleep without altering feeding behavior, which it affects only on a much longer time scale. The profound effect of sNPF on sleep indicates that it is an important sleep-promoting molecule (Shang, 2013).

    This study presents several independent lines of evidence indicating that sNPF acutely increases sleep and alters sleep homeostasis. This is because release of animals from sNPF neuron activation after several days of hypersomnolence resulted in a transient decrease in sleep or negative sleep rebound. Moreover, activation of sNPF neurons during mechanical sleep deprivation blunted the rebound sleep following the deprivation. This suggests that sNPF might alter the internal perception of sleep state during the deprivation despite an apparently behaviorally awake state. It also suggests that sNPF might directly modulate the sleep homeostat (Shang, 2013).

    The most potent in vivo manipulations of sNPF function, mutation of the sNPF gene and strong activation of sNPF neurons with dTRPA1, affect daytime as well as nighttime sleep levels. These manipulations also strongly alter sleep bout duration, a measure of consolidation, in the opposite direction to the sleep duration effects. More limited manipulations of sNPF signaling (cell-specific downregulation of sNPF levels or of sNPF signaling) indicate that sNPF is most important for promoting sleep at night. It also affects the structure of daytime sleep, a function of sNPF circuitry normally suppressed during the day by wake-promoting GABAergic neurons, acting via GABAA receptors. Suppression of excitability with Kir2.1 likely mimics this daytime GABAergic function. These results in aggregate suggest that sNPF action differs depending on the time of day, a result that supports the idea that daytime and nighttime sleep may be regulated by different circuitries (Shang, 2013).

    The role of sNPF in promoting more consolidated sleep is consistent with a general antiarousal function. As in mammals, Drosophila arousal can be measured electrophysiologically, but the most straightforward measure of arousal state is behavioral, and sleep fragmentation is indicative of a less stable, more easily aroused state. The main neurochemical previously implicated in fly arousal is DA, and l-LNvs play a prominent role in the arousal circuitry (Shang, 2013).

    Although the imaging assays indicated that sNPF alone did not lead to significant cAMP changes in the l-LNvs, it mildly suppressed the activation effect of DA on the l-LNvs. As one subset of clock neurons in the sleep circuit releases sNPF and promotes sleep at night and an adjacent subset responds to sNPF and suppresses nighttime sleep, sNPF may be used by the s-LNv-to-l-LNv pathway to coordinate the timing of sleep with other circadian behaviors. Indeed, sNPF mRNA is a potent cycling mRNA in s-LNvs (Kula-Eversole, 2010). Importantly, the electrophysiological assays in larval central neurons suggest that inhibition of neuronal firing may be a general feature of sNPF function and relevant to other sleep centers in addition to the clock neurons (Shang, 2013).

    sNPF and other sleep-relevant neuromodulators like DA are likely to act at multiple sites in the brain given the major state change effected by the sleep/wake transition. This expectation also reflects the modest effects of sNPFR manipulation within l-LNvs on total sleep time. Moreover, fan-shaped body neurons have recently been shown to be important for DA-mediated arousal (Liu, 2012; Ueno, 2012). The ability of these neuromodulators to act on many circuits may allow for more flexible integration of sleep with other behaviors and with other external and internal factors (Shang, 2013)

    An important influence on sleep is metabolic state. Indeed, sNPF facilitated the OA-to-DILP circuit, which may reflect its role in sleep/wake, feeding and/or metabolic regulation. However, the wake-promoting effect of activating the DILP pathway is context-dependent, occurring only in LD. Moreover, acute activation of octopaminergic neurons by dTRPA1 only mildly affects sleep and also in a condition-dependent manner, and feeding animals with octopamine only significantly suppresses total sleep after 2–3 days of exposure. Although long-term activation of octopaminergic neurons leads to long-lasting increases in food dwelling, these effects contrast sharply with the rapid and condition-independent effects seen with acute increases in dopamine signaling (Shang, 2011). Dopaminergic neurons have also been shown to be a critical part of NPF-regulated changes in satiety and response to food, and activation of these neurons indeed led to an immediate onset of food dwelling, which reversed rapidly upon dTRPA1 inactivation. As expected, tracker analysis shows that these food-dwelling flies also sleep very little, indicating that dopamine affects both sleep and feeding rapidly. These effects contrast with the slow effects on food dwelling by sNPF neuronal activation (Shang, 2013)

    The simplest interpretation of this slow food-dwelling response is that it is secondary to a more primary effect of sNPF on sleep. Indeed, a slow buildup in hunger or even starvation as a consequence of too much sleep is a simple explanation consistent with most if not all of these data. Behavioral effects as a secondary consequence of some other more direct effect is also an interpretation of many of the sleep effects of activation of peptidergic neurons seen in this study, in which only sNPF robustly increased sleep, i.e., under both LD and DD conditions. It is therefore suggested that a necessary condition for serious consideration of a molecule as behavior-relevant is a rapid response, which is also relatively condition independent. Dopamine as a wake-promoting molecule and now sNPF as a sleep-promoting molecule meet these criteria (Shang, 2013)

    Shi, M., Yue, Z., Kuryatov, A., Lindstrom, J. M. and Sehgal, A. (2014). Identification of Redeye, a new sleep-regulating protein whose expression is modulated by sleep amount. Elife 3: e01473. PubMed ID: 24497543

    Identification of Redeye, a new sleep-regulating protein whose expression is modulated by sleep amount

    This study reports a new protein involved in the homeostatic regulation of sleep in Drosophila. A forward genetic screen was conducted of chemically mutagenized flies to identify short-sleeping mutants, and one, redeye (rye; nicotinic Acetylcholine Receptor α4), was found that shows a severe reduction of sleep length. Cloning of rye reveals that it encodes a nicotinic acetylcholine receptor alpha subunit required for Drosophila sleep. Levels of RYE oscillate in light-dark cycles and peak at times of daily sleep. Cycling of RYE is independent of a functional circadian clock, but rather depends upon the sleep homeostat, as protein levels are up-regulated in short-sleeping mutants and also in wild type animals following sleep deprivation. It is proposed that the homeostatic drive to sleep increases levels of RYE, which responds to this drive by promoting sleep (Shi, 2014).

    The molecular mechanism of sleep homeostasis is a mystery and a subject of intense research in the sleep field. In addition to the investigation of mechanisms underlying sleep drive, considerable effort is being put into identifying biomarkers of sleep need. Based on what is known about the so-called sleep homeostat, which consists of increasing sleep pressure during wakefulness and dissipation of such pressure following sleep, it is suggested that a component or direct output of the homeostat should satisfy three criteria: (1) the gene product should regulate the sleep:wake cycle (i.e., genetic alleles of this gene should have some sleep phenotype); (2) expression levels or activity of the gene product should go up during wakefulness or during sleep deprivation and (3) expression levels or activity should decrease after sleep. The function of RYE and the molecular kinetics of the RYE protein largely satisfy these criteria. However, while RYE builds up during sleep deprivation, it does not accumulate gradually over the wake period in a daily cycle. Rather, it displays a marked increase close to the time of sleep onset, suggesting that it is not a central component of the homeostat, but responds to an upstream homeostatic signal, perhaps when that signal reaches a certain threshold. The fact that over-expression of RYE does not promote sleep also supports the idea that it is not the sleep-inducing homeostatic signal. Nevertheless, RYE is not simply a sleep output gene or sleep biomarker. It is required for implementation of signals from the homeostat and it functions to maintain sleep. Thus, it is proposed that rye is a sleep-regulating gene immediately downstream of the homeostat (Shi, 2014).

    It is suggested that RYE represents a molecular correlate of delta power, a characteristic of an electroencephalogram (EEG) that reflects sleep drive. Recently, a few other molecules were reported to change with sleep drive, but the effects were at the level of the mRNA, the magnitude of the increase was less than we report here for RYE and loss of the molecules did not affect baseline sleep duration. In addition, only one is expressed cyclically, indicating that others reflect sleep drive only under pathological conditions of sleep deprivation. RYE levels oscillate robustly in a daily cycle, although the phase is not as coherent as seen for circadian clock proteins. The timing of the peak varies within a temporal range, such that there is almost always a daytime peak and a night-time peak but not necessarily at the exact same time. It is suggested that RYE cycles under control of the sleep homeostat, which may not time behavior as precisely as the circadian clock, perhaps because sleep can be influenced by many factors. The variability in RYE cycling is particularly pronounced in short-sleeping mutants and in the ClkJrk circadian clock mutant, suggesting that the clock does influence RYE expression although it is not required for its cycling in an LD cycle. Interestingly, RYE cycles exclusively at the level of the protein, indicating translational or post-translational mechanisms. It is worth noting that a recently identified sleep regulator, Insomniac, is a component of specific protein degradation pathways in the cell. Although this study indicates that RYE cycling does not require Insomniac, it is possible that it is regulated by other protein turn-over machinery. Thus, translational/posttranslational regulation appears to be part of the mechanism of sleep homeostasis (Shi, 2014).

    This study shows that RYE not only reflects sleep drive, but is also required for sleep maintenance. Given that RYE is induced by sleep deprivation and it promotes sleep, one might expect over-expression of the protein to increase sleep. However, transgenic expression of rye in a wild type background does not increase sleep, suggesting that while rye is necessary, it is not sufficient for sleep onset. The possibility cannot be excluded that RYE functions together with other signals as part of the sleep-inducing homeostatic drive. On the other hand, it is also possible that transgenic expression does not produce adequate amounts of RYE protein in relevant cells. This might be the case if RYE is tightly regulated at the level of protein stability. For the moment, though, the parsimonious explanation noted above is preferred, that RYE is not part of the homeostat, but immediately downstream of it (Shi, 2014).

    Acetylcholine signaling has been long proposed as an arousal factor, as the nAChR complex is a cation channel that normally promotes neuronal activity and ACh is released during wakefulness in mammals. In contrast, this study indicates that at least one nAChR subunit (RYE) promotes sleep in the fly. There are more than 10 paralogs of nAChR subunits in the fly genome. One possibility is that RYE is expressed specifically in sleep promoting neurons, while other subunits of AChRs are in wake-promoting cells. An increase in ACh during wakefulness may contribute to the accumulation of sleep drive and to the increase in RYE. Alternatively, sleep drive may increase RYE independently of ACh, but in either scenario, RYE then promotes sleep. The precise site of RYE action is currently not known. rye-gal4 driven GFP is expressed widely in the brain, but it is not certain that endogenous RYE is as widespread, as an antibody was not effective in immunohistochemistry experiments, and GAL4 drivers are often quite promiscuous (Shi, 2014).

    Sleepless (SSS) was previously identified as a sleep promoting factor, essential for maintaining baseline sleep and for homeostatic rebound. An interaction between rye and sss is therefore not surprising. What is surprising is that overexpression of SSS promotes wakefulness in ryeT227M heterozygotes. SSS is a GPI-anchored protein that functions as a neuronal modulator. Previous studies indicate that SSS promotes activity of the voltage-gated potassium channel, Shaker. This study reports that SSS acts like a brake on nAChR (RYE) activity, as does Lynx-1, a SSS-like molecule in mammals. Although the data shown for Drosophila receptors used only the RYE α subunit, it is likely that SSS also inhibits activity of other Drosophila nAChR receptors. As both sssP1 (a null mutation) and sssP2 (a hypomorphic allele) are short-sleeping mutants, it is proposed that the overall effect of SSS is to promote sleep. The reduced sleep in sss mutants probably results from an increase of neuronal excitability, through inactivation of potassium channels (Shaker), or from hyperactivity of nAChR channels in wake-promoting neurons. Thus, typically the sleep-inhibiting effect of SSS, mediated through RYE, is masked by these other more dominant influences. However, in a sensitized background (i.e., rye/+), this effect is evident. RYE promotes sleep, and so loss of RYE results in a decrease in sleep, which is further impacted by SSS overexpression (Shi, 2014).

    It is noted that there are some caveats to these data. For instance, the ryeT227M allele could confer a neomorphic function that accounts for the interaction with sss. Likewise, the effects in oocytes could be non-physiological, not necessarily reflecting what happens in the fly brain. However, given that interactions were observed in these two very different types of assays, and both assays indicate repression of nAchR function by SSS, which is the effect predicted from the role of the mammalian SSS-like protein, Lynx1, it is believed SSS does indeed regulate nAchRs such as RYE. Interactions between SSS and nicotinic acetylcholine receptors are also confirmed by other recent unpublished studies (Shi, 2014).

    It is interesting that genes identified through independent genetic screens in Drosophila are turning out to interact with one another. SSS and Shaker were isolated independently as sleep-regulating genes, and subsequently shown to interact, and now it turns out that RYE interacts with SSS. Given that each of these genes represents a relatively infrequent hit in an unbiased screen, the interactions suggest that genetic approaches are converging upon specific sleep-regulating pathways. Interestingly, a recent Genome-wide association study for sleep-altering loci in humans identified significant effects of SNPs in an nAchR subunit as well as in a regulatory subunit of Shaker, suggesting that these mechanisms are also conserved across species (Shi, 2014).

    Wide awake mediates the circadian timing of sleep onset

    How the circadian clock regulates the timing of sleep is poorly understood. This study identifies a Drosophila mutant, wide awake (wake), that exhibits a marked delay in sleep onset at dusk. Loss of Wake in a set of arousal-promoting clock neurons, the large ventrolateral neurons (l-LNvs), impairs sleep onset. Wake levels cycle, peaking near dusk, and the expression of Wake in l-LNvs is Clock dependent. Strikingly, Clock and cycle mutants also exhibit a profound delay in sleep onset, which can be rescued by restoring Wake expression in LNvs. Wake interacts with the GABAA receptor Resistant to Dieldrin (Rdl), upregulating its levels and promoting its localization to the plasma membrane. In wake mutant l-LNvs, GABA sensitivity is decreased and excitability is increased at dusk. It is proposed that Wake acts as a clock output molecule specifically for sleep, inhibiting LNvs at dusk to promote the transition from wake to sleep (Liu, 2014).

    The molecular pathways by which the circadian clock modulates the timing of sleep are unknown. This study identified a molecule, Wide Awake, that promotes sleep and is required for circadian timing of sleep onset. The data argue for a direct role for the circadian oscillator in regulating sleep and support a model whereby Wake acts as a molecular intermediary between the circadian clock and sleep. In this model, Wake transmits timing information from the circadian clock to inhibit arousal circuits at dusk, thus facilitating the transition from wake to sleep. wake is transcriptionally upregulated by Clk activity, specifically in LNv clock neurons. Wake levels in l-LNvs rise during the day and peak at the early night, near the wake/sleep transition. This increase in Wake levels upregulates Rdl in l-LNvs, enhancing their sensitivity to GABA signaling and serving to inhibit the l-LNv arousal circuit. In this manner, cycling of Wake promotes cycling of the excitability of l-LNv cells. In wake mutants, l-LNvs lose this circadian electrical cycling; the higher firing rate of these cells at dusk leads to increased release of Pdf, which would act on Pdfr on downstream neurons to inhibit sleep onset. The identity of the GABAergic neurons signaling to the l-LNvs is currently unknown, but if they serve to convey information about sleep pressure from homeostatic circuits, the l-LNvs could serve as a site of integration for homeostatic and circadian sleep regulatory signals (Liu, 2014).

    Although Wake is expressed in clock neurons and its levels vary throughout the day, Wake itself is not a core clock molecule, since period length and activity rhythm strength are intact in wake mutants in constant darkness. The effects of Wake on sleep latency are not attributable to alterations in core clock function. In addition, because locomotor rhythm strength is intact in wake mutants, Wake is not a clock output molecule for locomotor rhythms. Rather, Wake is the first clock output molecule shown to specifically regulate sleep timing (Liu, 2014).

    Previous studies have demonstrated that Rdl in LNvs regulates sleep in Drosophila. This work further implicates Rdl as a key factor in the circadian modulation of sleep. In mammals, the localization and function of GABAA receptors are regulated by a variety of cytosolic accessory proteins, some of which are associated with the plasma membrane and cytoskeletal elements. The data suggest that Wake acts as an accessory protein for Rdl, upregulating its levels and promoting its targeting to the plasma membrane. Rdl is broadly expressed throughout the adult Drosophila brain, whereas Wake appears more spatially restricted. It is likely that Rdl is regulated by Wake in specific cells (e.g., Wake+ cells), while in other cells that express Rdl but not Wake, other factors are involved. Together, these data suggest a model in which increased GABA sensitivity is required in specific arousal circuits to facilitate rapid and complete switching between sleep/wake states at the appropriate circadian time (Liu, 2014).

    Intriguingly, the data, as well as data from the Allen Brain Atlas, suggest that the putative mouse homolog of Wake (ANKFN1) is enriched in the mouse SCN, the master circadian pacemaker in mammals. Specifically, ANKFN1 is expressed in the 'core' region of the SCN, which is analogous to the large LNvs in flies, in that it receives light input and its molecular oscillator does not cycle or cycles weakly in DD. These observations support a potential conservation of Wake function in regulating clock-dependent timing of sleep onset, which will be evaluated by ongoing genetic analysis in mice. The pronounced difficulty of wake flies to fall asleep at lights off is reminiscent of sleep-onset insomnia in humans. Moreover, the most widely used medications for the treatment of insomnia are GABA agonists. Thus, the identification of a molecule that mediates circadian timing of sleep onset by promoting GABA signaling may lead to a deeper understanding of mechanisms underlying insomnia and its potential therapies (Liu, 2014).

    Circadian pacemaker neurons change synaptic contacts across the day

    Daily cycles of rest and activity are a common example of circadian control of physiology. In Drosophila, rhythmic locomotor cycles rely on the activity of 150-200 neurons grouped in seven clusters. Work from many laboratories points to the small ventral lateral neurons (sLNvs) as essential for circadian control of locomotor rhythmicity. sLNv neurons undergo circadian remodeling of their axonal projections, opening the possibility for a circadian control of connectivity of these relevant circadian pacemakers. This study shows that circadian plasticity of the sLNv axonal projections has further implications than mere structural changes. First, it was found that the degree of daily structural plasticity exceeds that originally described, underscoring that changes in the degree of fasciculation as well as extension or pruning of axonal terminals could be involved. Interestingly, the quantity of active zones changes along the day, lending support to the attractive hypothesis that new synapses are formed while others are dismantled between late night and the following morning. More remarkably, taking full advantage of the GFP reconstitution across synaptic partners (GRASP) technique, this study showed that, in addition to new synapses being added or removed, sLNv neurons contact different synaptic partners at different times along the day. These results lead to a proposal that the circadian network, and in particular the sLNv neurons, orchestrates some of the physiological and behavioral differences between day and night by changing the path through which information travels (Gorostaza, 2014).

    Circadian remodeling of the small ventral lateral neuron (sLNv) dorsal terminals was first described at the peak and trough levels of pigment-dispersing factor (PDF) immunoreactivity, that is at zeitgeber time 2 (ZT2) and ZT14 (2 hr after lights ON and lights OFF, respectively), as well as their counterparts under constant darkness (DD) (circadian time 2 [CT2] and CT14). For a more precise examination of the extent of structural remodeling, a time course was carried out. An inducible GAL4 version termed GeneSwitch restricted to PDF neurons (pdf-GS) combined with a membrane-tethered version of GFP (mCD8GFP) was used as control. As expected from the original observations, a significant reduction in complexity of the axonal arbor-measured as total axonal crosses-could be seen between CT2 and CT14 and between CT18 and CT22, which remained unchanged at nighttime. However, toward the end of the subjective night (CT22), the primary processes appeared to be shorter. To more precisely describe this additional form of plasticity, the length of the maximum projection was measure from the lateral horn toward the midbrain. This analysis revealed that toward the end of the subjective night (CT22), PDF projections are significantly shorter than at the beginning of the day (CT2). These observations imply that mechanisms other than the proposed changes in the degree of fasciculation are recruited during circadian plasticity. To get a deeper insight into the nature of the phenomena, the changes were monitored in brain explants kept in culture for 48 hr after dissection. Transgenic pdf-GAL4; UAS-mCD8RFP flies (referred to as pdf>RFP) were dissected under safe red light, and brains were maintained under DD. Imaging of individual brains at two different time points highlighted three types of changes experienced by axonal terminals: (1) changes in the degree of fasciculation/defasciculation, more common in primary branches, (2) the addition/retraction of new processes, mostly affecting those of secondary or tertiary order, and (3) positional changes of minor terminals, thus confirming and extending previous observations. Altogether, these results indicate that a rather complex remodeling process takes place on daily basis in the axonal terminals of PDF neurons (Gorostaza, 2014).

    The level of structural remodeling occurring at the dorsal terminals suggested that synapses themselves could undergo changes in a time-dependent fashion. The presynaptic protein Synaptotagmin (SYT) was examined at different times across the day as an indicator of vesicle accumulation. A GFP-tagged version of SYT was expressed in PDF neurons (pdf >sytGFP), and both the number and area span by SYT+ puncta (most likely describing the accumulation of several dense core vesicles) were analyzed separately at the sLNv dorsal terminals. No statistical differences were observed in the number of SYT+ puncta (although there is a tendency for higher numbers in the early morning), perhaps as a result of the nature of the signal, which is too diffuse for precise identification of individual spots. On the other hand, SYT+ puncta were larger and, as a result, the area covered by SYT+ immunoreactivity was significantly different at CT2 compared to CT14, but not between CT22 and CT2, perhaps reflecting that vesicles started to accumulate at the end of the day in preparation for the most dramatic membrane change taking place between CT22 and the beginning of the following morning (Gorostaza, 2014).

    The observation that a more complex structure correlated with a larger area covered by presynaptic vesicles reinforced the notion that indeed the number of synapses could be changing throughout the day and prompted analysis of Bruchpilot (BRP), a well-established indicator of active zones. Expressing a tagged version of BRP in PDF neurons, the number of BRP+ puncta was quantitated as a proxy for active zones at times when the most dramatic changes in structure had been detected (i.e., CT2, CT14, and CT22). Interestingly, the number of active zones was significantly larger at CT2 than at CT14 or CT22; in fact, no statistical differences were observed between the last two time points, underscoring that axonal remodeling can occur (i.e., pruning of major projections taking place toward the end of the night) without significantly affecting overall connectivity. Thus, circadian structural plasticity is accompanied by changes in the number of synapses. Not only are more vesicles recruited toward CT2, but also a higher number of active zones are being established (Gorostaza, 2014).

    Circadian changes in the abundance of the presynaptic active zone BRP have also been shown in the first optic neuropil of the fly brain, although BRP abundance in the lamina increases in the early night under DD conditions, in contrast to the oscillations in BRP levels observed at the dorsal protocerebrum that peak in the early subjective day just described. In addition, rhythmic changes in the number of synapses have also been described in the terminals of adult motor neurons in Drosophila examined through transmission electron microscopy, as well as BRP+ light confocal microscopy, underscoring the validity of the approach employed herein. Interestingly, in different brain areas, the level of presynaptic markers (such as BRPRFP or SYTGFP) also changes in response to the sleep/wake 'state,' being high when the animals are awake and lower during sleep; this observation led to the proposal that sleep could be involved in maintaining synaptic homeostasis altered during the awaking state. This trend coincides with observation of higher levels during the subjective morning and lower levels at the beginning of the subjective night; however, no changes were detected through the night, suggesting that, at least in clock neurons, there is a circadian rather than a homeostatic control of synaptic activity. Given that clock outputs are predominantly regulated at the transcriptional level and that there is circadian regulation of MEF2, a transcription factor that turns on a program involved in structural remodeling, this correlation opens the provocative possibility that the circadian clock is controlling the ability of assembling novel synapses in particularly plastic neurons, which might become recruited and/or stabilized, or otherwise pruned (disassembled), toward the end of the day (Gorostaza, 2014).

    Adult-specific electrical silencing of PDF neurons reduces the complexity of dorsal arborizations, although a certain degree of circadian remodeling of the axonal terminals still takes place. To examine whether electrical alterations could affect circadian changes in the number of active zones, either Kir2.1 or NaChBac was expressed (to hyperpolarize or depolarize PDF neurons, respectively). To avoid any undesired developmental defects, pdf-GS was used to drive expression of the channels only during adulthood. Interestingly, Kir2.1 expression abrogated circadian changes in the number of active zones. In fact, PDF neurons displayed a reduced number of active zones compared to controls at CT2 and remained at similar levels throughout the day, indistinguishable from nighttime controls. On the other hand, when neurons were depolarized through NaChBac expression, the number of active zones did not change along the day and was maintained at daytime levels even at CT14 and CT22 (Gorostaza, 2014).

    It has recently been shown that MEF2, a transcription factor involved in activity-dependent neuronal plasticity and morphology in mammals, is circadianly regulated and mediates some of the remodeling of PDF dorsal terminals through the regulation of Fasciclin2. In contrast, adult-specific silencing (and depolarization) of PDF neurons abolishes cycling in the number of BRP+ active zones, despite the fact that it does not completely obliterate the remodeling of the axonal terminals, suggesting that some of the mechanisms underlying structural plasticity are clearly activity independent and are most likely the result of additional clock-controlled output pathways still to be identified (Gorostaza, 2014).

    Since structural remodeling of PDF neurons results in the formation and disappearance of new synapses on daily basis, it was anticipated that not only the number but also the postsynaptic partners of these contacts could concomitantly be changing. To shed light on this possibility, GFP reconstitution across synaptic partners (GRASP), which labels contacts between adjacent membranes, was used. In brief, two complementary fragments of GFP tethered to the membrane are expressed in different cells. If those cells are in contact, GFP is reconstituted and becomes fluorescent. GRASP has previously been employed to monitor synapses in adult flies. Given the complex arborization at the dorsal protocerebrum, it was asked whether specific subsets of circadian neurons projecting toward that area could be contacting across the day. Perhaps not surprisingly, an extensive reconstituted GFP signal could be observed between the sLNv dorsal projections and those of the posterior dorsal neuron 1 cells (DN1ps, lighted up by the dClk4.1-GAL4 line, suggesting contacts along the entire area, which are detectable across all time points analyzed (ZT2, ZT14, and ZT22). Consistent with these observations, extensive physical contact between the sLNv projections and those of the DN1p neurons has just been reported at the dorsal protocerebrum with no clear indication of the time of day examined. Next the study examined whether a subset of dorsal LNs (LNds), projecting toward both the accessory medulla and the dorsal protocerebrum (through the combined expression of Mai179-GAL4; pdf-GAL80), could also contact the profuse dorsal arborization of sLNv neurons; this genetic combination enables expression of split-GFP in a restricted number of circadian cells (which are part of the evening oscillator, i.e., up to four LNds, including at least a CRYPTOCHROME-positive one, and the fifth sLNv), as well as others located within the pars intercerebralis (PI), a neurosecretory structure recently identified as part of the output pathway relevant in the control of locomotor behavior. In contrast to the extensive connections between DN1p and sLNv clusters, only very discreet reconstituted puncta were detected. Quite strikingly, the degree of connectivity appeared to change across the day, reaching a maximum (when almost every brain exhibited reconstituted signal) at ZT22. However, due to the nature of the signal, no quantitation of its intensity was attempted. Although a more detailed analysis is required to define the identity (i.e., whether it is one or several LNds, the fifth sLNv, or both groups that directly contact the sLNvs), this finding highlights a potentially direct contact between the neuronal substrates of the morning and evening oscillators. In sum, through GRASP analysis, this study has begun to map the connectivity within the circadian network; commensurate with a hierarchical role, the sLNvs appear to differentially contact specific subsets in a distinctive fashion (Gorostaza, 2014).

    To address the possibility that PDF neurons could be contacting noncircadian targets at different times across the day, an enhancer trap screen was carried out employing a subset of GAL4 enhancers selected on the basis of their expression pattern in the adult brain, i.e., known to drive expression in the dorsal protocerebrum, and an additional requirement imposed was that none of the selected GAL4 lines could direct expression to the sLNv neurons to avoid internal GFP reconstitution. Reconstitution of the GFP signal at the sLNv dorsal terminals by recognition through specific antibodies was assessed at three different time points for each independent GAL4 line (ZT2, ZT14, and ZT22). Some of the GAL4 lines showed reconstituted GFP signal at every time point analyzed, suggesting that those neuronal projections are indeed in close contact across the day and might represent stable synaptic contacts. No GFP signal was detected in the negative parental controls. Despite the fact that several GAL4 drivers directed expression to the proximity of the PDF dorsal terminals, some of the selected lines did not result in reconstituted GFP signal (Gorostaza, 2014).

    Quite remarkably, a proportion of the GAL4 lines showed GFP+ signal only at a specific time point. One such example is line 3-86, where reconstitution was detected in most of the brains analyzed at ZT2, but not at nighttime. Being able to identify putative postsynaptic contacts to the sLNvs in the early morning is consistent with the observation of a higher number of BRP+ active zones in the early day. This enhancer trap spans different neuropils, such as the mushroom body (MB) lobes and lateral horn, and directs expression to particularly high levels in the PI, a structure that has recently been implicated in the rhythmic control of locomotor activity. In fact, some yet unidentified somas in the PI appear to arborize profusely near the PDF dorsal terminals, underscoring a potential link between the two neuronal groups. These direct contacts are unlikely to be the ones reported by Mai179-GAL4; pdf-GAL80 since those connect to the sLNv neurons preferentially at night. Interestingly, a subset of neurons in the PI is relevant in mediating the arousal promoting signal from octopamine; in addition, sleep promoting signals are also derived from a different subset of neurons in the PI, opening the attractive possibility that both centers could be under circadian modulation (Gorostaza, 2014).

    GRASP analysis also uncovered a different neuronal cluster (4-59) that contacts PDF neurons preferentially during the early night (ZT14), which is in itself striking, since this time point corresponds to that with fewer arborizations and an overall decrease in the number of synapses. This enhancer trap is expressed in the MBs, subesophagic ganglion, antennal lobes, and accessory medulla. Among those structures, the MBs are important for higher-order sensory integration and learning in insects. Interestingly, circadian modulation of short-term memory and memory retrieval after sleep deprivation has been reported; short-term memory was found to peak around ZT15-ZT17, coinciding with the window of GFP reconstitution, thus providing a functional connection to the synaptic plasticity observed. To corroborate whether there is a direct contact between the two neuronal clusters, the extensively used GAL4 driver OK107, which is expressed in the α'/β'and the γ lobes of the MBs and to a lower extent in the PI, was employed for GRASP analysis. Surprisingly, reconstituted GFP signal could be observed at every time point analyzed, suggesting that MB lobes contact PDF neurons throughout the day but that specific clusters (for example those highlighted by the 4-59 line) establish plastic, time-of-day-dependent physical contact with PDF neurons (Gorostaza, 2014).

    It was next asked whether these prospective postsynaptic targets of PDF neurons could play a role in the output pathway controlling rhythmic locomotor activity. To address this possibility, the impact of adult-specific alteration of excitability of distinct neuronal groups was examined through expression of TRPA1. Interestingly, adult-specific depolarization of specific neuronal populations triggered a clear deconsolidation of the rhythmic pattern of activity, which resulted in less-rhythmic flies accompanied by a significant decrease in the strength of the underlying rhythm. These results lend support to the notion that the underlying neuronal clusters are relevant in the control of rest/activity cycles (Gorostaza, 2014).

    Over the years, it has become increasingly clear that the circadian clock modulates structural properties of different cells. In fact, a number of years ago, it was reported that the projections of a subset of core pacemaker fly PDF+ and mammalian VIP+ neurons undergo structural remodeling on daily basis. The work presented in this study lends support to the original hypothesis that circadian plasticity represents a means of encoding time-of-day information. By changing their connectivity, PDF neurons could drive time-specific physiological processes. As new synapses assemble while others are dismantled, the information flux changes, allowing PDF neurons to promote or inhibit different processes at the same time. This type of plasticity adds a new level to the complex information encoded in neural circuits, where PDF neurons could not only modulate the strength in the connectivity between different partners, but also define which neuronal groups could be part of the circadian network along the day. Although further analysis of the underlying process is ensured, evidence so far supports the claim that structural plasticity is an important circadian output (Gorostaza, 2014).

    Genetic rescue of functional senescence in synaptic and behavioral plasticity

    Aging has been linked with decreased neural plasticity and memory formation in humans and in laboratory model species such as the fruit fly, Drosophila melanogaster. This study examined plastic responses following social experience in Drosophila as a high-throughput method to identify interventions that prevent these impairments. Young (5-day old) or aged (20-day old) adult female Drosophila were housed in socially enriched or isolated environments, then assayed for changes in sleep and for structural markers of synaptic terminal growth in the ventral lateral neurons (LNVs) of the circadian clock. When young flies are housed in a socially enriched environment, they exhibit synaptic elaboration within a component of the circadian circuitry, the LNVs, which is followed by increased sleep. Aged flies, however, no longer exhibit either of these plastic changes. Because of the tight correlation between neural plasticity and ensuing increases in sleep, sleep after enrichment was used as a high-throughput marker for neural plasticity to identify interventions that prolong youthful plasticity in aged flies. To validate this strategy, three independent genetic manipulations were used that delay age-related losses in plasticity: (1) elevation of dopaminergic signaling, (2) over-expression of the serum response factor transcription factor blistered (bs) in the LNVs, and (3) reduction of the Imd immune signaling pathway. These findings provide proof-of-principle evidence that measuring changes in sleep in flies after social enrichment may provide a highly scalable assay for the study of age-related deficits in synaptic plasticity. These studies demonstrate that Drosophila provides a promising model for the study of age-related loss of neural plasticity and begin to identify genes that might be manipulated to delay the onset of functional senescence (Donlea, 2014).

    The MAP kinase p38 is part of Drosophila melanogaster's circadian clock

    All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. This study demonstrates by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, it was found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining approximately 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed the Western Blot results and point to p38 as a potential 'clock kinase' phosphorylating Period. Taken together, these findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways (Dusik, 2014 - Open access: 25144774).

    Class IIa histone deacetylases are conserved regulators of circadian function

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells including muscle, neurons and lymphocytes. This study describes a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, over-expression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 over-expression decreases BMAL1 acetylation on Lys537 and pharmacological inhibition of Class IIa HDACs increases BMAL1 acetylation. Furthermore, cyclical nucleocytoplasmic shuttling of HDAC5 was observed in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of Class IIa HDACs is signal-regulated and influenced by Ca2+ and cAMP signals, these findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery (Fogg, 2014).


    Abruzzi, K. C., et al. (2011). Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev. 25(22): 2374-86. PubMed Citation: 22085964

    Agosto, J., Choi, J. C., Parisky, K. M., Stilwell, G., Rosbash, M. and Griffith, L. C. (2008). Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11: 354-359. PubMed ID: 18223647

    Aschoff, J. (1979). Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z. Tierpsychol. 49: 225-249. PubMed citation: 386643

    Bachleitner, W., et al. (2007). Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc. Natl. Acad. Sci. 104(9): 3538-43. PubMed citation; Online text

    Busza, A., Emery-Le, M., Rosbash, M. and Emery, P. (2004). Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304: 1503-1506. PubMed citation: 15178801

    Cavanaugh, D. J., Geratowski, J. D., Wooltorton, J. R., Spaethling, J. M., Hector, C. E., Zheng, X., Johnson, E. C., Eberwine, J. H. and Sehgal, A. (2014). Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell 157: 689-701. PubMed ID: 24766812

    Chung, B. Y, et al. (2009). The GABAA receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr. Biol. 19: 386-390. PubMed Citation: 19230663

    Chyb, S., et al. (2009). Modulation of the light response by cAMP in Drosophila photoreceptors. J. Neurosci. 19: 8799-8807. PubMed Citation: 10516299

    Claridge-Chang, A., et al. (2001). Circadian regulation of gene expression systems in the Drosophila head. Neuron 32: 657-671. 11719206

    Collins, B., Mazzoni, E. O., Stanewsky, R. and Blau, J. (2006). Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr. Biol. 16: 441-449. PubMed citation: 16527739

    Collins, B., Kane, E. A., Reeves, D. C., Akabas, M. H. and Blau, J. (2012). Balance of activity between LNvs and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron 74(4): 706-18. PubMed Citation: 22632728

    Dahdal, D., Reeves, D. C., Ruben, M., Akabas, M. H. and Blau, J. (2010). Drosophila pacemaker neurons require g protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms. Neuron 68: 964-977. PubMed ID: 21145008

    Damulewicz, M. and Pyza, E. (2011). The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity. PLoS One 6(6): e21258. PubMed Citation: 21760878

    Depetris-Chauvin, A., et al. (2011). Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs. Curr. Biol. 21(21): 1783-93. PubMed Citation: 22018542

    Dissel, S., et al. (2004). A constitutively active cryptochrome in Drosophila melanogaster. Nat. Neurosci. 7: 834-840. PubMed citation: 15258584

    Donlea, J. M., Ramanan, N., Silverman, N. and Shaw, P. J. (2014). Genetic rescue of functional senescence in synaptic and behavioral plasticity. Sleep 37(9): 1427-37. PubMed ID: 25142573

    Dusik, V., Senthilan, P. R., Mentzel, B., Hartlieb, H., Wulbeck, C., Yoshii, T., Raabe, T. and Helfrich-Forster, C. (2014). The MAP kinase p38 is part of Drosophila melanogaster's circadian clock. PLoS Genet 10: e1004565. PubMed ID: 25144774

    Enell, L., Hamasaka, Y., Kolodziejczyk, A. and Nassel, D. R. (2007). gamma-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter. J Comp Neurol 505: 18-31. PubMed ID: 17729251

    Fogg, P. C., O'Neill, J. S., Dobrzycki, T., Calvert, S., Lord, E. C., McIntosh, R. L., Elliott, C. J., Sweeney, S. T., Hastings, M. H. and Chawla, S. (2014). Class IIa histone deacetylases are conserved regulators of circadian function. J Biol Chem [Epub ahead of print]. PubMed ID: 25271152

    Galvez, T., Duthey, B., Kniazeff, J., Blahos, J., Rovelli, G., Bettler, B., Prezeau, L. and Pin, J. P. (2001). Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 20: 2152-2159. PubMed ID: 11331581

    Glaser, F. T. and Stanewsky, R. (2005). Temperature synchronization of the Drosophila circadian clock. Curr. Biol. 15: 1352-1363. PubMed Citation: 16085487

    Gmeiner, F., Kolodziejczyk, A., Yoshii, T., Rieger, D., Nassel, D. R., Helfrich-Forster, C. (2013). GABAB receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. J Exp Biol 216: 3837-3843. PubMed ID: 24068350

    Gorostiza, E. A., Depetris-Chauvin, A., Frenkel, L., Pirez, N., Ceriani, M. F. (2014) Circadian pacemaker neurons change synaptic contacts across the day. Curr Biol. PubMed ID: 25155512

    Grima, B., Chelot, E., Xia. R. and Rouyer, F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431: 869-873. PubMed citation: 15483616

    Hamasaka, Y., Wegener, C. and Nassel, D. R. (2005). GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium. J Neurobiol 65: 225-240. PubMed ID: 16118795

    Helfrich-Forster, C., Yoshii, T., Wulbeck, C., Grieshaber, E., Rieger, D., Bachleitner, W., Cusamano, P. and Rouyer, F. (2007). The lateral and dorsal neurons of Drosophila melanogaster: new insights about their morphology and function. Cold Spring Harb Symp Quant Biol 72: 517-525. PubMed ID: 18419311

    Hirsh, J., et al. (2010). Roles of dopamine in circadian rhythmicity and extreme light sensitivity of circadian entrainment. Curr. Biol. 20: 209-214. PubMed Citation: 20096587

    Kaneko, H., (2012). Circadian rhythm of temperature preference and its neural control in Drosophila. Curr. Biol. 22(19): 1851-7. PubMed Citation: 22981774

    Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A. and Bettler, B. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396: 683-687. PubMed ID: 9872317

    Kula-Eversole, E., Nagoshi, E., Shang, Y., Rodriguez, J., Allada, R. and Rosbash, M. (2010). Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci U S A 107: 13497-13502. PubMed ID: 20624977

    Lelito, K. R. and Shafer, O. T. (2012). Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network. J Neurophysiol 107: 2096-2108. PubMed ID: 22279191

    Liu, Q., Liu, S., Kodama, L., Driscoll, M. R. and Wu, M. N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol 22: 2114-2123. PubMed ID: 23022067

    Liu, S., Lamaze, A., Liu, Q., Tabuchi, M., Yang, Y., Fowler, M., Bharadwaj, R., Zhang, J., Bedont, J., Blackshaw, S., Lloyd, T. E., Montell, C., Sehgal, A., Koh, K. and Wu, M. N. (2014). WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 82(1):151-66. PubMed ID: 24631345

    Maguire, S. E., Schmidt, P. S. and Sehgal, A. (2014). Natural populations of Drosophila melanogaster reveal features of an uncharacterized circadian property: the lower temperature limit of rhythmicity. J Biol Rhythms 29: 167-180. PubMed ID: 24916390

    Mazzoni, E. O., Desplan, C. and Blau, J. (2005). Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 45: 293-300. PubMed Citation: 15664180

    McCarthy, E. V., Wu, Y., Decarvalho, T., Brandt, C., Cao, G. and Nitabach, M. N. (2011). Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci 31: 8181-8193. PubMed ID: 21632940

    Mezler, M., Muller, T. and Raming, K. (2001). Cloning and functional expression of GABA(B) receptors from Drosophila. Eur J Neurosci 13: 477-486. PubMed ID: 11168554

    Mistlberger, R. E. (2005). Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49: 429-454. PubMed ID: 16269313

    Miyasako, Y., Umezaki, Y. and Tomioka, K. (2007). Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 22: 115-126. PubMed Citation: 17440213

    McCarthy, E. V., et al. (2011). Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J. Neurosci. 31(22): 8181-93. PubMed Citation: 21632940

    Menet, J. S., et al. (2010). Dynamic PER repression mechanisms in the Drosophila circadian clock: From on-DNA to off-DNA. Genes Dev 24: 358-367. PubMed Citation: 20159956

    Nash, H.A., Scott, R. L., Lear, B. C. and Allada, R. (2002). An unusual cation channel mediates photic control of locomotion in Drosophila. Curr. Biol. 12: 2152-2158. PubMed Citation: 12498692

    Nitabach, M. N., Blau, J. and Holmes, T. C. (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109: 485-495. 12086605

    Nitabach, M. N., et al. (2006). Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J Neurosci. 26(2): 479-89. 16407545

    Parisky, K. M., Agosto, J., Pulver, S. R., Shang, Y., Kuklin, E., Hodge, J. J., Kang, K., Liu, X., Garrity, P. A., Rosbash, M. and Griffith, L. C. (2008). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60: 672-682. PubMed ID: 19038223

    Picot, M., et al. (2009). A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain. J. Neurosci. 29(26): 8312-20. PubMed Citation: 19571122

    Pittendrigh, S. and Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. 106: 333-355. PubMed citation: 10802100

    Rieger, D., Shafer, O. T., Tomioka, K. and Helfrich-Forster, C. (2006). Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci. 26(9): 2531-43. 16510731

    Sathyanarayanan, S., et al. (2008). Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. Genes Dev. 22: 1522-1533. PubMed Citation: 18519643

    Schneider, N. L. and Stengl, M. (2005). Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae. J. Neurosci. 25: 5138-5147. 15917454

    Shafer, O. T. and Taghert, P. H. (2009). RNA-interference knockdown of Drosophila pigment dispersing factor in neuronal subsets: the anatomical basis of a neuropeptide's circadian functions. PLoS One 4: e8298. PubMed ID: 20011537

    Shang, Y., Griffith, L. C. and Rosbash, M. (2008). Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc. Natl. Acad. Sci. 105: 19587-19594. PubMed Citation: 19060186

    Shang, Y., Haynes, P., Pirez, N., Harrington, K. I., Guo, F., Pollack, J., Hong, P., Griffith, L. C. and Rosbash, M. (2011). Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci 14: 889-895. PubMed ID: 21685918

    Shang, Y., Donelson, N. C., Vecsey, C. G., Guo, F., Rosbash, M. and Griffith, L. C. (2013). Short neuropeptide f is a sleep-promoting inhibitory modulator. Neuron 80: 171-183. PubMed ID: 24094110

    Sheeba, V., et al. (2008a). Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J. Neurophysiol. 99: 976-988. PubMed Citation: 18077664

    Sheeba, V., et al. (2008b). Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18(20): 1537-45. PubMed Citation: 18771923

    Shi, M., Yue, Z., Kuryatov, A., Lindstrom, J. M. and Sehgal, A. (2014). Identification of Redeye, a new sleep-regulating protein whose expression is modulated by sleep amount. Elife 3: e01473. PubMed ID: 24497543

    Singh, K., Ju, J. Y., Walsh, M. B., DiIorio, M. A. and Hart, A. C. (2014). Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 37(9):1439-51 PubMed ID: 25142568

    Stoleru, D., Peng, Y. Agosto, J. and Rosbash, M. (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431: 862-868. PubMed citation: 15483615

    Stoleru, D., Peng, Y., Nawathean, P. and Rosbash, M. (2005). A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438: 238-242. PubMed citation: 16281038

    Stoleru, D., et al. (2007). The Drosophila circadian network is a seasonal timer. Cell 129(1): 207-19. PubMed citation: 17418796

    Ueno, T., Tomita, J., Tanimoto, H., Endo, K., Ito, K., Kume, S. and Kume, K. (2012). Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci 15: 1516-1523. PubMed ID: 23064381

    Vanin, S., et al. (2012). Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484(7394): 371-5. PubMed Citation: 22495312

    Wijnen, H., Naef, F., Boothroyd, C., Claridge-Chang, A. and Young, M. W. (2006). Control of daily transcript oscillations in Drosophila by light and the circadian clock. PLoS Genet. 2(3): e39. 16565745

    Wilson, R. I. and Laurent, G. (2005). Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25: 9069-9079. PubMed ID: 16207866

    Yin, L., Wang, J., Klein, P. S. and Lazar, M. A. (2006). Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311: 1002-1005. PubMed citation: 16484495

    Yuan, Q., Xiang, Y., Yan, Z., Han, C., Jan, L. Y. and Jan, Y. N. (2011). Light-induced structural and functional plasticity in Drosophila larval visual system. Science 333: 1458-1462. Pubmed: 21903815

    date revised: 10 December 2014

    Zygotically transcribed genes

    Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.

    The Interactive Fly resides on the
    Society for Developmental Biology's Web server.