The Interactive Fly

Zygotically transcribed genes

Heat shock factor and heat shock proteins


Heat shock factor

  • Interplay between RNA interference and heat shock response systems in Drosophila melanogaster
  • Linear ubiquitination by LUBEL has a role in Drosophila heat stress response
    Protein that mediate the magnitude and efficiency of the heat shock response
    Heat shock proteins

    Interplay between RNA interference and heat shock response systems in Drosophila melanogaster

    The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. This study investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster. Pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. Deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR (Funikov, 2016).

    Linear ubiquitination by LUBEL has a role in Drosophila heat stress response

    The HOIP ubiquitin E3 ligase generates linear ubiquitin chains by forming a complex with HOIL-1L and SHARPIN in mammals. This study provides the first evidence of linear ubiquitination induced by a HOIP orthologue in Drosophila. This study identified Drosophila CG11321, which was named Linear Ubiquitin E3 ligase (LUBEL), and it was found to catalyze linear ubiquitination in vitro. Endogenous linear ubiquitin chain-derived peptides were detected by mass spectrometry in Drosophila Schneider 2 cells and adult flies. Furthermore, using CRISPR/Cas9 technology, linear ubiquitination-defective flies were established by mutating residues essential for the catalytic activity of LUBEL Linear ubiquitination signals accumulate upon heat shock in flies. Interestingly, flies with LUBEL mutations display reduced survival and climbing defects upon heat shock, which is also observed upon specific LUBEL depletion in muscle. Thus, LUBEL is involved in the heat response by controlling linear ubiquitination in flies (Asaoka, 2016).


    References

    Asaoka, T., et al. (2016). Linear ubiquitination by LUBEL has a role in Drosophila heat stress response. EMBO Rep [Epub ahead of print]. PubMed ID: 27702987

    Funikov, S. Y., Ryazansky, S. S., Kanapin, A. A., Logacheva, M. D., Penin, A. A., Snezhkina, A. V., Shilova, V. Y., Garbuz, D. G., Evgen'ev, M. B. and Zatsepina, O. G. (2016). Interplay between RNA interference and heat shock response systems in Drosophila melanogaster. Open Biol 6. PubMed ID: 27805906


    Zygotically transcribed genes

    Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.

    The Interactive Fly resides on the
    Society for Developmental Biology's Web server.