RNA-binding FMRP and Staufen sequentially regulate the coracle scaffold to control synaptic glutamate receptor and bouton development
Both mRNA-binding Fragile X Mental Retardation Protein (FMRP) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. This study tested whether these RNA-binding proteins (RBPs) act jointly in a common mechanism. Both dfmr1 and staufen mutants, and trans-heterozygous double mutants, were shown to display increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNAi, a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, this study showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and this study confirmed that Staufen binds to coracle mRNA. FMRP and Staufen were shown to act sequentially to co-regulate postsynaptic Coracle expression, and show Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, this study found dfmr1, staufen and coracle mutants elevate neurotransmission strength. FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development (Song, 2022).
This study reveals the mechanism of the established FMRP negative regulation of postsynaptic GluRIIA receptors and presynaptic bouton formation in the Drosophila FXS disease model. Specifically, the mRNA-binding FMRP-positive translational regulator binds to staufen mRNA as predicted, within the postsynaptic cell. Consequently, both dfmr1 and staufen mutants share the elevated GluRIIA level and bouton number phenotypes based on a common postsynaptic pathway function, and genetically interact as trans-heterozygotes to reproduce these phenotypes. Staufen acts as a dsRBP to bind coracle mRNA as predicted; both dfmr1 and staufen mutants exhibit elevated postsynaptic Coracle levels, and genetically interact as trans-heterozygotes to reproduce this phenotype. Coracle acts as a GluRIIA-binding anchoring scaffold within the postsynaptic domain to regulate local receptor accumulation (Chen, 2005). Consequently, dfmr1, staufen and coracle mutants all increase NMJ synaptic functional differentiation to elevate neurotransmission strength. Finally, the elevated postsynaptic GluRIIA levels mediate retrograde BMP receptor trans-synaptic signaling that induces pMad to drive new presynaptic bouton development. dfmr1, staufen and coracle mutants all exhibit elevated presynaptic pMad levels, thereby linking the postsynaptic GluRIIA accumulation and presynaptic supernumerary bouton formation defects shared by all of these mutants (Song, 2022).
The staufen mutant increased synaptic Coracle levels, GluRIIA levels and bouton number are all internally consistent. In a previous study, opposite phenotypes were measured in staufenHL/Df(2R)Pcl7B, which reduces another 14 genes in heterozygous deficiency, including loci involved in neuronal development (e.g. grh, nopo). Importantly, this study similarly found reduced synaptic protein levels and bouton number in staufenHL/Df(2R)Pcl7B, suggesting that heterozygosity of one or more of the neighboring genes impairs synaptic development. However, this study showed that a staufen RNAi that reduces transcript levels by ~90% replicates the staufen mutant NMJ phenotypes of increased GluRIIA levels and synaptic bouton numbers. This was also replicated with a second, independent staufen RNAi line. Moreover, this study showed that the effect is entirely restricted to postsynaptic muscle RNAi, with no effect from presynaptic neuron RNAi, consistent with restricted postsynaptic Staufen function. In addition, postsynaptic staufen rescue of the staufen mutant restored normal synaptic bouton formation, with OE reducing GluRIIA levels in staufen mutants and rescuing GluRIIA levels in dfmr1 mutants. Both staufen mutants and postsynaptic staufen RNAi also share the arrested supernumerary satellite bouton development characterizing dfmr1 null mutants. These many independent lines of evidence confirm the results, and are consistent with the known parallel FMRP role in restricting GluRIIA levels and synaptic bouton formation (Song, 2022).
To regulate Staufen, FMRP binds staufen mRNA and protects targeted staufen transcripts from degradation. FMRP contains at least three distinct RNA-binding domains (RBDs), and Staufen has five RBDs. Staufen reportedly binds a specific RNA hairpin structure formed by long 3' UTRs, but RIP shows that Staufen also binds mRNAs that are not predicted to generate this secondary structure. Although the decreased staufen mRNA levels in both dfmr1 mutants and muscle-targeted dfmr1 RNAi are predicted to be due to the lack of FMRP binding, it is also possible that other unregulated interactors cause the downregulated staufen mRNA expression (Shah et al., 2020). Localized labeling with an anti-Staufen antibody has been reported in the postsynaptic NMJ, which can be confirmed, but it was not possible to reduce labeling in staufen hypomorphic mutants. Therefore Staufen labeling was not shown in the current study. Moreover, western blots have been reported with the same anti-Staufen antibody; however, attempts were unsuccessful. Therefore qPCR was used to measure staufen mRNA levels. Staufen binds to coracle mRNA, but does so in a non-selective manner. This result is consistent with Staufen acting as a very broad spectrum dsRBP, and suggests that Staufen likely acts with a translational regulator partner to generate specificity. FMRP is very well established to partner with other RBPs to mediate the translational regulation of its target transcripts (Song, 2022).
------
The postsynaptic Coracle scaffold acts in a GluRIIA local anchoring mechanism, presumably to link the receptors to the underlying actin cytoskeleton (Chen, 2005). The jointly elevated Coracle and GluRIIA levels in both dfmr1 and staufen mutants are consistent with this scaffold function. Because the dfmr1/+; staufen/+ trans-heterozygotes share this correlated Coracle and GluRIIA upregulation in the postsynaptic domain, a single common signaling pathway is indicated. Coracle also restricts terminal branching development in peripheral sensory neurons. Both coracle mutants and sensory neuron-targeted coracle RNAi also display increased dendritic branch and termini numbers. These phenotypes are similar to the expanded NMJ terminals and increased synaptic bouton development reported in this study. Importantly, both coracle loss of function (mutants and muscle-targeted RNAi) and gain of function (muscle-targeted OE) increase postsynaptic GluRIIA levels and generate supernumerary boutons. Likewise, the knockdown and OE of many other similar scaffolds are known to cause phenocopying defects. Some examples include the muscle chaperone UNC-45, the tight junction scaffold zonula occludens-1 (ZO-1) and synaptic UNC-13. Indeed, both coracle loss and OE similarly cause increased dendritic crossing in Drosophila sensory neurons, similar to the phenocopy of developmental defects reported in this study. Combining the roles of postsynaptic FMRP-Staufen-Coracle in GluRIIA clustering, it was reasoned that this pathway must be a regulatory determinant of synaptic functional development (Song, 2022).
Removing FMRP, Staufen and Coracle strongly enhances functional synaptic differentiation and NMJ neurotransmission strength. This is consistent with expectations from the postsynaptic GluRIIA accumulation in all of these mutants. Elevated GluRIIA levels are well known to be associated with increased evoked functional responses and prolonged channel open times. A GluRIIA pore sequence (MQQ) critically required for the Drosophila channel Ca2+ permeability is conserved in mammalian receptors. This selectivity allows Ca2+-dependent participation in spontaneous (mEJC) and evoked (EJC) neurotransmission. Although enhanced evoked EJC amplitudes are typically accompanied by mEJC alterations, this study found that mEJC amplitude and frequency are unchanged in both the staufen and coracle mutants, and show only minimal changes in the dfmr1 mutants. Classically, both evoked and spontaneous neurotransmission were thought to be mediated by the same vesicles; however, more recent evidence has indicated that spontaneous and evoked neurotransmission have distinct machinery and vesicle pools. Postsynaptic receptors can be segregated into different compartments that are activated by either spontaneous or evoked release. This work supports this growing body of evidence for differential regulation. Importantly, GluRIIA has unique functions, modulating both presynaptic glutamate release and presynaptic bouton development (Song, 2022).
The dfmr1, staufen and coracle mutants all showed upregulated presynaptic pMad correlated with postsynaptic activated GluRIIA accumulation. GluRIIA activation triggers presynaptic pMad signaling via BMP receptors surrounding active zones, which, in turn, stabilizes GluRIIA receptors in the postsynaptic domains. This trans-synaptic signaling mechanism induces new presynaptic bouton development. The targeted postsynaptic RNAi for all three genes confirms this intercellular link. Synaptic BMP signaling involves both the type I serine/threonine kinase receptors and the type II receptor Wit. Although BMP ligand Glass bottom boat (Gbb) signaling via Wit presynaptic receptors is well established at the NMJ to modulate synaptogenesis, the mechanism of presynaptic bouton formation induced by activated GluRIIA signaling does not involve canonical BMP signaling via Gbb. In the dfmr1 mutants, it is suggested that postsynaptic GluRIIA accumulation induces presynaptic bouton development via non-canonical GluRIIA-Wit trans-synaptic retrograde signaling. Similarly, the muscle postsynaptic glypican Dally-like protein (Dlp) negatively regulates NMJ synaptic development by inhibiting this same non-canonical BMP pathway through decreased activated GluRIIA expression. Postsynaptic GluRIIA clustering can thus trigger presynaptic bouton formation, although supernumerary boutons do not always induce reciprocal GluRIIA changes. It is concluded that an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulates intertwined structural and functional glutamatergic synapse development (Song, 2022).