Search PubMed for articles about Drosophila Tau
Abtahi, S. L., Masoudi, R. and Haddadi, M. (2020). The Distinctive Role of Tau and Amyloid beta in Mitochondrial Dysfunction through Alteration in Mfn2 and Drp1 mRNA Levels: A Comparative Study in Drosophila melanogaster. Gene: 144854. PubMed ID: 32525045
Alves-Silva, J., Sanchez-Soriano, N., Beaven, R., Klein, M., Parkin, J., Millard, T. H., Bellen, H. J., Venken, K. J., Ballestrem, C., Kammerer, R. A. and Prokop, A. (2012). Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins). J Neurosci 32(27): 9143-9158. PubMed ID: 22764224
Ando, K., Maruko-Otake, A., Ohtake, Y., Hayashishita, M., Sekiya, M. and Iijima, K. M. (2016). Stabilization of microtubule-unbound Tau via Tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced Tau toxicity. PLoS Genet 12: e1005917. PubMed ID: 27023670
Arnes, M., Alaniz, M. E., Karam, C. S., Cho, J. D., Lopez, G., Javitch, J. A. and Santa-Maria, I. (2019). Role of Tau protein in remodeling of circadian neuronal circuits and sleep. Front Aging Neurosci 11: 320. PubMed ID: 31824299
Bardai, F. H., Wang, L., Mutreja, Y., Yenjerla, M., Gamblin, T. C. and Feany, M. B. (2017). A conserved cytoskeletal signaling cascade mediates neurotoxicity of FTDP-17 tau mutations in vivo. J Neurosci. PubMed ID: 29138281
Bolkan, B. J. and Kretzschmar, D. (2014). Loss of Tau results in defects in photoreceptor development and progressive neuronal degeneration in Drosophila. Dev Neurobiol 74(12): 1210-1225. PubMed ID: 24909306
Bouge, A. L. and Parmentier, M. L. (2016). Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech [Epub ahead of print]. PubMed ID: 26822478
Burnouf, S., Grönke, S., Augustin, H., Dols, J., Gorsky, M.K., Werner, J., Kerr, F., Alic, N., Martinez, P. and Partridge, L. (2016). Deletion of endogenous Tau proteins is not detrimental in Drosophila. Sci Rep 6: 23102. PubMed ID: 26976084
Chouhan, A.K., Guo, C., Hsieh, Y.C., Ye, H., Senturk, M., Zuo, Z., Li, Y., Chatterjee, S., Botas, J., Jackson, G.R., Bellen, H.J. and Shulman, J.M. (2016). Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathol Commun 4: 62. PubMed ID: 27338814
Cowan, C. M., Sealey, M. A. and Mudher, A. (2020). Suppression of tau-induced phenotypes by vitamin E demonstrates the dissociation of oxidative stress and phosphorylation in mechanisms of tau toxicity. J Neurochem. PubMed ID: 33251603
Cornelison, G. L., Levy, S. A., Jenson, T. and Frost, B. (2018). Tau-induced nuclear envelope invagination causes a toxic accumulation of mRNA in Drosophila. Aging Cell: e12847. PubMed ID: 30411463
Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. and Mandelkow, E. (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89(2): 297-308. PubMed ID: 9108484
Frenkel-Pinter, M., Stempler, S., Tal-Mazaki, S., Losev, Y., Singh-Anand, A., Escobar-Alvarez, D., Lezmy, J., Gazit, E., Ruppin, E. and Segal, D. S. Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila. Neurobiol Aging. PubMed ID: 28552182
Galasso, A., Cameron, C. S., Frenguelli, B. G. and Moffat, K. G. (2017). An AMPK-dependent regulatory pathway in tau-mediated toxicity. Biol Open [Epub ahead of print]. PubMed ID: 28808138
Gorsky, M. K., Burnouf, S., Dols, J., Mandelkow, E. and Partridge, L. (2016). Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo. Sci Rep 6: 22685. PubMed ID: 26940749
Hahn, I., Voelzmann, A., Parkin, J., Fulle, J. B., Slater, P. G., Lowery, L. A., Sanchez-Soriano, N. and Prokop, A. (2021). Tau, XMAP215/Msps and Eb1 co-operate interdependently to regulate microtubule polymerisation and bundle formation in axons. PLoS Genet 17(7): e1009647. PubMed ID: 34228717
Heidary, G. and Fortini, M. E. (2001). Identification and characterization of the Drosophila tau homolog. Mech Dev 108(1-2): 171-178. PubMed ID: 11578871
Herzmann, S., Krumkamp, R., Rode, S., Kintrup, C. and Rumpf, S. (2017). PAR-1 promotes microtubule breakdown during dendrite pruning in Drosophila. EMBO J 36(13): 1981-1991. PubMed ID: 28554895
Herzmann, S., Gotzelmann, I., Reekers, L. F. and Rumpf, S. (2018). Spatial regulation of microtubule disruption during dendrite pruning in Drosophila. Development [Epub ahead of print]. PubMed ID: 29712642
Iijima-Ando, K., Sekiya, M., Maruko-Otake, A., Ohtake, Y., Suzuki, E., Lu, B. and Iijima, K. M. (2012). Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1. PLoS Genet 8(8): e1002918. PubMed ID: 22952452
Kadas, D., Papanikolopoulou, K., Xirou, S., Consoulas, C. and Skoulakis, E. M. C. (2019). Human Tau isoform-specific presynaptic deficits in a Drosophila central nervous system circuit. Neurobiol Dis 124: 311-321. PubMed ID: 30529489
Kilian, J.G., Hsu, H.W., Mata, K., Wolf, F.W. and Kitazawa, M. (2017). Astrocyte transport of glutamate and neuronal activity reciprocally modulate tau pathology in Drosophila. Neuroscience [Epub ahead of
print]. PubMed ID: 28215745
Kosmidis, S., Grammenoudi, S., Papanikolopoulou, K. and Skoulakis, E. M. (2010). Differential effects of Tau on the integrity and function of neurons essential for learning in Drosophila. J Neurosci 30(2): 464-477. PubMed ID: 20071510
Kovacs, G. G. (2015). Invited review: Neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 41(1): 3-23. PubMed ID: 25495175
Lee, H. H., Jan, L. Y. and Jan, Y. N. (2009). Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proc Natl Acad Sci U S A 106(15): 6363-6368. PubMed ID: 19329489
Ma, Q. L., Zuo, X., Yang, F., Ubeda, O. J., Gant, D. J., Alaverdyan, M., Kiosea, N. C., Nazari, S., Chen, P. P., Nothias, F., Chan, P., Teng, E., Frautschy, S. A. and Cole, G. M. (2014). Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J Neurosci 34(21): 7124-7136. PubMed ID: 24849348
Malmanche, N., Dourlen, P., Gistelinck, M., Demiautte, F., Link, N., Dupont, C., Vanden Broeck, L., Werkmeister, E., Amouyel, P., Bongiovanni, A., Bauderlique, H., Moechars, D., Royou, A., Bellen, H. J., Lafont, F., Callaerts, P., Lambert, J. C. and Dermaut, B. (2017). Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy in Drosophila Tauopathy Models. Sci Rep 7: 40764. PubMed ID: 28112163
Maor-Nof, M., Homma, N., Raanan, C., Nof, A., Hirokawa, N. and Yaron, A. (2013). Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A. Cell Rep 3(4): 971-977. PubMed ID: 23562155
Miguel, L., Frebourg, T., Campion, D. and Lecourtois, M. (2020). Moderate Overexpression of Tau in Drosophila Exacerbates Amyloid-beta-Induced Neuronal Phenotypes and Correlates with Tau Oligomerization. J Alzheimers Dis. PubMed ID: 32065789
Morris, M., Hamto, P., Adame, A., Devidze, N., Masliah, E. and Mucke, L. (2013). Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging 34(6): 1523-1529. PubMed ID: 23332171
Papanikolopoulou, K., Grammenoudi, S., Samiotaki, M. and Skoulakis, E. M. C. (2018). Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Hum Mol Genet. PubMed ID: 29659825
Passarella, D. and Goedert, M. (2018). Beta-sheet assembly of Tau and neurodegeneration in Drosophila melanogaster. Neurobiol Aging 72: 98-105. PubMed ID: 30240946
Prifti, E., Tsakiri, E. N., Vourkou, E., Stamatakis, G., Samiotaki, M. and Papanikolopoulou, K. (2020). The two Cysteines of Tau protein are functionally distinct and contribute differentially to its pathogenicity in vivo. J Neurosci. PubMed ID: 33334867
Prokop, A. (2013). The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev 8: 17. PubMed ID: 24010872
Qiang, L., Yu, W., Andreadis, A., Luo, M. and Baas, P. W. (2006). Tau protects microtubules in the axon from severing by katanin. J Neurosci 26(12): 3120-3129. PubMed ID: 16554463
Ramesh Babu, J., Lamar Seibenhener, M., Peng, J., Strom, A. L., Kemppainen, R., Cox, N., Zhu, H., Wooten, M. C., Diaz-Meco, M. T., Moscat, J. and Wooten, M. W. (2008). Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106(1): 107-120. PubMed ID: 18346206
Sapir, T., Frotscher, M., Levy, T., Mandelkow, E. M. and Reiner, O. (2012). Tau's role in the developing brain: implications for intellectual disability. Hum Mol Genet 21(8): 1681-1692. PubMed ID: 22194194
Scarpelli, E. M., Trinh, V. Y., Tashnim, Z., Krans, J. L., Keller, L. C. and Colodner, K. J. (2019). Developmental expression of human tau in Drosophila melanogaster glial cells induces motor deficits and disrupts maintenance of PNS axonal integrity, without affecting synapse formation. PLoS One 14(12): e0226380. PubMed ID: 31821364
Shim, K. H., Kim, S. H., Hur, J., Kim, D. H., Demirev, A. V. and Yoon, S. Y. (2019). Small-molecule drug screening identifies drug Ro 31-8220 that reduces toxic phosphorylated tau in Drosophila melanogaster. Neurobiol Dis: 104519. PubMed ID: 31233882
Sofola, O., Kerr, F., Rogers, I., Killick, R., Augustin, H., Gandy, C., Allen, M. J., Hardy, J., Lovestone, S. and Partridge, L. (2010). Inhibition of GSK-3 ameliorates Aβ pathology in an adult-onset Drosophila model of Alzheimer's disease. PLoS Genet 6(9): e1001087. PubMed ID: 20824130
Stewart, A., Tsubouchi, A., Rolls, M. M., Tracey, W. D. and Sherwood, N. T. (2012). Katanin p60-like1 promotes microtubule growth and terminal dendrite stability in the larval class IV sensory neurons of Drosophila. J Neurosci 32(34): 11631-11642. PubMed ID: 22915107
Talmat-Amar, Y., Arribat, Y. and Parmentier, M. L. (2018). Vesicular Axonal Transport is Modified In Vivo by Tau Deletion or Overexpression in Drosophila. Int J Mol Sci 19(3). PubMed ID: 29509687
Voelzmann, A., Okenve-Ramos, P., Qu, Y., Chojnowska-Monga, M., Del Caño-Espinel, M., Prokop, A. and Sanchez-Soriano, N. (2016). Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking. Elife 5. PubMed ID: 27501441
Wen, X., An, P., Li, H., Zhou, Z., Sun, Y., Wang, J., Ma, L. and Lu, B. (2020). Tau Accumulation via Reduced Autophagy Mediates GGGGCC Repeat Expansion-Induced Neurodegeneration in Drosophila Model of ALS. Neurosci Bull. PubMed ID: 32500377
Zhang, B., Li, Q., Chu, X., Sun, S. and Chen, S. (2016). Salidroside reduces tau hyperphosphorylation via up-regulating GSK-3β phosphorylation in a tau transgenic Drosophila model of Alzheimer's disease. Transl Neurodegener 5: 21. PubMed ID: 27933142
Zhukareva, V., Vogelsberg-Ragaglia, V., Van Deerlin, V. M., Bruce, J., Shuck, T., Grossman, M., Clark, C. M., Arnold, S. E., Masliah, E., Galasko, D., Trojanowski, J. Q. and Lee, V. M. (2001). Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 49(2): 165-175. PubMed ID: 11220736