Fly Labs and References


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


  • Dagmar Iber Computational Biology Group Swiss Institute of Bioinformatics, Zurich
    Vollmer, J., Fried, P., Aguilar-Hidalgo, D., Sanchez-Aragon, M., Iannini, A., Casares, F. and Iber, D. (2017). Growth control in the Drosophila eye disc by the cytokine Unpaired. Development 144(5): 837-843. PubMed ID: 28246213

    Vollmer, J. and Iber, D. (2016). An unbiased analysis of candidate mechanisms for the regulation of Drosophila wing disc growth. Sci Rep 6: 39228. PubMed ID: 27995964

    Fried, P., Sanchez-Aragon, M., Aguilar-Hidalgo, D., Lehtinen, B., Casares, F. and Iber, D. (2016). A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development. PLoS Comput Biol 12(9): e1005052. PubMed ID: 27626238

    Vollmer, J., Fried, P., Sanchez-Aragon, M., Lopes, C. S., Casares, F. and Iber, D. (2016). A quantitative analysis of growth control in the Drosophila eye disc. Development 143(9): 1482-1490. PubMed ID: 26965369

  • Tatsushi Igaki Division of Cell Biology, Kobe University
    Enomoto, M., Takemoto, D. and Igaki, T. (2021). Interaction between Ras and Src clones causes interdependent tumor malignancy via Notch signaling in Drosophila. Dev Cell 56(15): 2223-2236.e2225. PubMed ID: 34324859

    Wada, Y., Ohsawa, S. and Igaki, T. (2021). Yorkie ensures robust tissue growth in Drosophila ribosomal protein mutants. Development. PubMed ID: 34228792

    Akai, N., Ohsawa, S., Sando, Y. and Igaki, T. (2021). Epithelial cell-turnover ensures robust coordination of tissue growth in Drosophila ribosomal protein mutants. PLoS Genet 17(1): e1009300. PubMed ID: 33507966

    Sanaki, Y., Nagata, R., Kizawa, D., Leopold, P. and Igaki, T. (2020). Hyperinsulinemia Drives Epithelial Tumorigenesis by Abrogating Cell Competition. Dev Cell 53(4): 379-389.e375. PubMed ID: 32386602

    Iida, C., Ohsawa, S., Taniguchi, K., Yamamoto, M., Morata, G. and Igaki, T. (2019). JNK-mediated Slit-Robo signaling facilitates epithelial wound repair by extruding dying cells. Sci Rep 9(1): 19549. PubMed ID: 31863086

    Nagata, R., Nakamura, M., Sanaki, Y. and Igaki, T. (2019). Cell competition is driven by autophagy. Dev Cell 51(1): 99-112.e114. PubMed ID: 31543447

    Katsukawa, M., Ohsawa, S., Zhang, L., Yan, Y. and Igaki, T. (2018). Serpin facilitates tumor-suppressive cell competition by blocking Toll-mediated Yki activation in Drosophila. Curr Biol. PubMed ID: 29804808

    Cong, B., Ohsawa, S. and Igaki, T. (2018). JNK and Yorkie drive tumor progression by generating polyploid giant cells in Drosophila. Oncogene. PubMed ID: 29535423

    Akai, N., Igaki, T. and Ohsawa, S. (2018). Wingless signaling regulates winner/loser status in Minute cell competition. Genes Cells 23(3): 234-240. PubMed ID: 29431244

    Yamamoto, M., Ohsawa, S., Kunimasa, K. and Igaki, T. (2017). The ligand Sas and its receptor PTP10D drive tumour-suppressive cell competition. Nature [Epub ahead of print]. PubMed ID: 28092921

  • Koichi M. Iijima Thomas Jefferson University
    Ando, K., Maruko-Otake, A., Ohtake, Y., Hayashishita, M., Sekiya, M. and Iijima, K. M. (2016). Stabilization of microtubule-unbound Tau via Tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Abeta42-induced Tau toxicity. PLoS Genet 12: e1005917. PubMed ID: 27023670

    Rimkus, S. A. and Wassarman, D. A. (2018). A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant. PLoS One 13(1): e0190821. PubMed ID: 29338042

  • Axel Imhof Molecular Biology, LMU, University of Munich
    Lukacs, A., Thomae, A. W., Krueger, P., Schauer, T., Venkatasubramani, A. V., Kochanova, N. Y., Aftab, W., Choudhury, R., Forne, I. and Imhof, A. (2021). The Integrity of the HMR complex is necessary for centromeric binding and reproductive isolation in Drosophila. PLoS Genet 17(8): e1009744. PubMed ID: 34424906

    Kochanova, N. Y., Schauer, T., Mathias, G. P., Lukacs, A., Schmidt, A., Flatley, A., Schepers, A., Thomae, A. W. and Imhof, A. (2020). A multi-layered structure of the interphase chromocenter revealed by proximity-based biotinylation. Nucleic Acids Res. PubMed ID: 32182352

    Bonnet, J., Lindeboom, R. G. H., Pokrovsky, D., Stricker, G., Celik, M. H., Rupp, R. A. W., Gagneur, J., Vermeulen, M., Imhof, A. and Muller, J. (2019). Quantification of proteins and histone marks in Drosophila embryos reveals stoichiometric relationships impacting chromatin regulation. Dev Cell. PubMed ID: 31630981

    Gerland, T.A., Sun, B., Smialowski, P., Lukacs, A., Thomae, A.W. and Imhof, A. (2017). The Drosophila speciation factor HMR localizes to genomic insulator sites. PLoS One 12: e0171798. PubMed ID: 28207793

    Volker-Albert, M. C., Pusch, M. C., Schmidt, A. and Imhof, A. (2016). Data on the kinetics of in vitro assembled chromatin. Data Brief 8: 353-359. PubMed ID: 27331114

    Peleg, S., Feller, C., Forne, I., Schiller, E., Sévin, D.C., Schauer, T., Regnard, C., Straub, T., Prestel, M., Klima, C., Schmitt Nogueira, M., Becker, L., Klopstock, T., Sauer, U., Becker, P.B., Imhof, A. and Ladurner, A.G. (2016). Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. EMBO Rep [Epub ahead of print]. PubMed ID: 26781291

    Barth, T. K., Schade, G. O., Schmidt, A., Vetter, I., Wirth, M., Heun, P., Thomae, A. W. and Imhof, A. (2014). Identification of novel Drosophila centromere associated proteins. Proteomics. PubMed ID: 24841622

    Thomae, A. W., Schade, G. O., Padeken, J., Borath, M., Vetter, I., Kremmer, E., Heun, P. and Imhof, A. (2013). A Pair of Centromeric Proteins Mediates Reproductive Isolation in Drosophila Species. Dev Cell. PubMed ID: 24239514

    Cernilogar, F. M., Burroughs, A. M., Lanzuolo, C., Breiling, A., Imhof, A. and Orlando, V. (2013). RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 8: e65740. PubMed ID: 23785447

    Ross, B. D., Rosin, L., Thomae, A. W., Hiatt, M. A., Vermaak, D., de la Cruz, A. F., Imhof, A., Mellone, B. G. and Malik, H. S. (2013). Stepwise evolution of essential centromere function in a Drosophila neogene. Science 340: 1211-1214. PubMed ID: 23744945

  • Jean-Luc Imler Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France
    Slavik, K. M., Morehouse, B. R., Ragucci, A. E., Zhou, W., Ai, X., Chen, Y., Li, L., Wei, Z., Bähre, H., König, M., Seifert, R., Lee, A. S. Y., Cai, H., Imler, J. L. and Kranzusch, P. J. (2021). cGAS-like receptors sense RNA and control 3'2'-cGAMP signaling in Drosophila. Nature. PubMed ID: 34261127

    Holleufer, A., Winther, K. G., Gad, H. H., Ai, X., Chen, Y., Li, L., Wei, Z., Deng, H., Liu, J., Frederiksen, N. A., Simonsen, B., Andersen, L. L., Kleigrewe, K., Dalskov, L., Pichlmair, A., Cai, H., Imler, J. L. and Hartmann, R. (2021). Two cGAS-like receptors induce antiviral immunity in Drosophila. Nature. PubMed ID: 34261128

    Cai, H., Holleufer, A., Simonsen, B., Schneider, J., Lemoine, A., Gad, H. H., Huang, J., Huang, J., Chen, D., Peng, T., Marques, J. T., Hartmann, R., Martins, N. E. and Imler, J. L. (2020). 2'3'-cGAMP triggers a STING- and NF-κB-dependent broad antiviral response in Drosophila. Sci Signal 13(660). PubMed ID: 33262294

    Goto, A., Okado, K., Martins, N., Cai, H., Barbier, V., Lamiable, O., Troxler, L., Santiago, E., Kuhn, L., Paik, D., Silverman, N., Holleufer, A., Hartmann, R., Liu, J., Peng, T., Hoffmann, J. A., Meignin, C., Daeffler, L. and Imler, J. L. (2018). The Kinase IKKbeta Regulates a STING- and NF-kappaB-Dependent Antiviral Response Pathway in Drosophila. Immunity 49(2): 225-234.e224. PubMed ID: 30119996

    Lamiable, O., Arnold, J., da Silva de Faria, I. J., Proveti Olmo, R., Bergami, F., Meignin, C., Hoffmann, J. A., Marques, J. T. and Imler, J. L. (2016). Analysis of the contribution of hemocytes and autophagy to Drosophila antiviral immunity. J Virol [Epub ahead of print]. PubMed ID: 27009948

    Lamiable, O., Kellenberger, C., Kemp, C., Troxler, L., Pelte, N., Boutros, M., Marques, J.T., Daeffler, L., Hoffmann, J.A., Roussel, A., and Imler, J.L. (2016). Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila. Proc Natl Acad Sci U S A [Epub ahead of print]. PubMed ID: 26739560

    Majzoub, K., Hafirassou, M. L., Meignin, C., Goto, A., Marzi, S., Fedorova, A., Verdier, Y., Vinh, J., Hoffmann, J. A., Martin, F., Baumert, T. F., Schuster, C. and Imler, J. L. (2014). RACK1 Controls IRES-Mediated Translation of Viruses. Cell 159: 1086-1095. PubMed ID: 25416947

    Chtarbanova, S., Lamiable, O., Lee, K. Z., Galiana, D., Troxler, L., Meignin, C., Hetru, C., Hoffmann, J. A., Daeffler, L. and Imler, J. L. (2014). Drosophila C virus systemic infection leads to intestinal obstruction. J Virol. PubMed ID: 25253354

    Goto, A., Fukuyama, H., Imler, J. L. and Hoffmann, J. A. (2014). The chromatin regulator DMAP1 modulates activity of the NF-kappaB transcription factor Relish in the Drosophila innate immune response. J Biol Chem. PubMed ID: 24947515

    Lamiable, O. and Imler, J. L. (2014). Induced antiviral innate immunity in Drosophila. Curr Opin Microbiol 20C: 62-68. PubMed ID: 24907422

  • Maneesha Inamdar Laboratory of Stem Cell Biology and Vascular Biology, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore

    Ray, A., Kamat, K. and Inamdar, M. S. (2021). A Conserved Role for Asrij/OCIAD1 in Progenitor Differentiation and Lineage Specification Through Functional Interaction With the Regulators of Mitochondrial Dynamics. Front Cell Dev Biol 9: 643444. PubMed ID: 34295888

    Rodrigues, D., Renaud, Y., VijayRaghavan, K., Waltzer, L. and Inamdar, M. S. (2021). Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. Elife 10. PubMed ID: 33594977

    Khadilkar, R. J., Ray, A., Chetan, D. R., Sinha, A. R., Magadi, S. S., Kulkarni, V. and Inamdar, M. S. (2017). Differential modulation of the cellular and humoral immune responses in Drosophila is mediated by the endosomal ARF1-Asrij axis. Sci Rep 7(1): 118. PubMed ID: 28273919

    Khadilkar, R. J., Rodrigues, D., Mote, R. D., Sinha, A. R., Kulkarni, V., Magadi, S. S. and Inamdar, M. S. (2014). ARF1-GTP regulates Asrij to provide endocytic control of Drosophila blood cell homeostasis. Proc Natl Acad Sci U S A 111: 4898-4903. PubMed ID: 24707047

    Sinha, A., Khadilkar, R. J., S, V. K., Sinha, A. R. and Inamdar, M. S. (2013). Conserved Regulation of the JAK/STAT Pathway by the Endosomal Protein Asrij Maintains Stem Cell Potency. Cell Rep. PubMed ID: 23972987

    Kulkarni, V., Khadilkar, R. J., Magadi, S. S. and Inamdar, M. S. (2011). Asrij maintains the stem cell niche and controls differentiation during Drosophila lymph gland hematopoiesis. PLoS One 6: e27667. PubMed ID: 22110713

  • Yoshihiro Inoue Drosophila Genetic Resource Center, Kyoto
    Le, T. D. and Inoue, Y. H. (2021). Sesamin Activates Nrf2/Cnc-Dependent Transcription in the Absence of Oxidative Stress in Drosophila Adult Brains. Antioxidants (Basel) 10(6). PubMed ID: 34200419

    Shoda, T., Yamazoe, K., Tanaka, Y., Asano, Y. and Inoue, Y. H. (2021). Orbit/CLASP determines centriole length by antagonising Klp10A in Drosophila spermatocytes. J Cell Sci. PubMed ID: 33674447

    Kurihara, M., Komatsu, K., Awane, R. and Inoue, Y. H. (2020). Loss of Histone Locus Bodies in the Mature Hemocytes of Larval Lymph Gland Result in Hyperplasia of the Tissue in mxc Mutants of Drosophila. Int J Mol Sci 21(5). PubMed ID: 32111032

    Tanabe, K., Awane, R., Shoda, T., Yamazoe, K. and Inoue, Y. H. (2019). Mutations in mxc tumor-suppressor gene induce chromosome instability in Drosophila male meiosis. Cell Struct Funct. PubMed ID: 31484839 <><>Araki, M., Kurihara, M., Kinoshita, S., Awane, R., Sato, T., Ohkawa, Y. and Inoue, Y. H. (2019). Anti-tumour effects of antimicrobial peptides, components of the innate immune system, against haematopoietic tumours in Drosophila mxc mutants. Dis Model Mech 12(6). PubMed ID: 31160313

    Ueda, M., Sato, T., Ohkawa, Y. and Inoue, Y. H. (2018). Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells [Epub ahead of print]. PubMed ID: 29314553

    Hayashi, D., Tanabe, K., Katsube, H. and Inoue, Y. H. (2016). B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis. Biol Open. PubMed ID: 27402967

    Yasukawa, T., Nakahara, Y., Hirai, J. and Inoue, Y. H. (2015). Drosophila Ogg1 is required to suppress 8-oxo-guanine accumulation following oxidative stress. Genes Genet Syst 90: 11-20. PubMed ID: 26119662

    Oka, S., Hirai, J., Yasukawa, T., Nakahara, Y. and Inoue, Y. H. (2015). A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults. Biogerontology. PubMed ID: 25801590

    Kitazawa, D., Matsuo, T., Kaizuka, K., Miyauchi, C., Hayashi, D. and Inoue, Y. H. (2014). Orbit/CLASP Is Required for Myosin Accumulation at the Cleavage Furrow in Drosophila Male Meiosis. PLoS One 9: e93669. PubMed ID: 24850412

    Miyauchi, C., Kitazawa, D., Ando, I., Hayashi, D., Inoue, Y. H. (2013) Orbit/CLASP Is Required for Germline Cyst Formation through Its Developmental Control of Fusomes and Ring Canals in Drosophila Males. PLoS One 8: e58220. PubMed ID: 23520495

  • Nicola Iovino Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
    Zenk, F., Zhan, Y., Kos, P., Loser, E., Atinbayeva, N., Schachtle, M., Tiana, G., Giorgetti, L. and Iovino, N. (2021). HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 593(7858): 289-293. PubMed ID: 33854237

    Zenk, F., Loeser, E., Schiavo, R., Kilpert, F., Bogdanovic, O. and Iovino, N. (2017). Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357(6347): 212-216. PubMed ID: 28706074

    Loser, E., Latreille, D. and Iovino, N. (2016). Chromatin Preparation and Chromatin Immuno-precipitation from Drosophila Embryos. Methods Mol Biol 1480: 23-36. PubMed ID: 27659972

    Iovino, N. (2014). Drosophila epigenome reorganization during oocyte differentiation and early embryogenesis. Brief Funct Genomics 13(3): 246-253. PubMed ID: 24665128

  • Tony Ip U. Mass. School of Medicine, Worcester
    Chen, H. J., Li, Q., Nirala, N. K. and Ip, Y. T. (2020). The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila. Stem Cell Reports. PubMed ID: 32330445

    Nie, Y., Yu, S., Li, Q., Nirala, N. K., Amcheslavsky, A., Edwards, Y. J. K., Shum, P. W., Jiang, Z., Wang, W., Zhang, B., Gao, N. and Ip, Y. T. (2019). Oncogenic Pathways and Loss of the Rab11 GTPase Synergize To Alter Metabolism in Drosophila. Genetics. PubMed ID: 31213502

    Li, Q., Nirala, N. K., Nie, Y., Chen, H. J., Ostroff, G., Mao, J., Wang, Q., Xu, L. and Ip, Y. T. (2018). Ingestion of food particles regulates the mechanosensing Misshapen-Yorkie pathway in Drosophila intestinal growth. Dev Cell 45(4): 433-449.e436. PubMed ID: 29754801

    Nie, Y., Li, Q., Amcheslavsky, A., Duhart, J. C., Veraksa, A., Stocker, H., Raftery, L. A. and Ip, Y. T. (2015). Bunched and Madm function downstream of Tuberous sclerosis complex to regulate the growth of intestinal stem cells in Drosophila. Stem Cell Rev. PubMed ID: 26323255

    Li, Q., Li, S., Mana-Capelli, S., Roth Flach, R. J., Danai, L. V., Amcheslavsky, A., Nie, Y., Kaneko, S., Yao, X., Chen, X., Cotton, J. L., Mao, J., McCollum, D., Jiang, J., Czech, M. P., Xu, L. and Ip, Y. T. (2014). The conserved misshapen-warts-yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 31: 291-304. PubMed ID: 25453828

    Amcheslavsky, A., Song, W., Li, Q., Nie, Y., Bragatto, I., Ferrandon, D., Perrimon, N. and Ip, Y. T. (2014). Enteroendocrine Cells Support Intestinal Stem-Cell-Mediated Homeostasis in Drosophila. Cell Rep. PubMed ID: 25263551

    Yu, S., Nie, Y., Knowles, B., Sakamori, R., Stypulkowski, E., Patel, C., Das, S., Douard, V., Ferraris, R. P., Bonder, E. M., Goldenring, J. R., Ip, Y. T. and Gao, N. (2014). TLR sorting by Rab11 endosomes maintains intestinal epithelial-microbial homeostasis. EMBO J. PubMed ID: 25063677

    Amcheslavsky, A., Nie, Y., Li, Q., He, F., Tsuda, L., Markstein, M. and Ip, Y. T. (2014). Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila. Development 141: 2621-2632. PubMed ID: 24961799

    Zhou, B., Yun, E. Y., Ray, L., You, J., Ip, Y. T. and Lin, X. (2014). Retromer promotes immune quiescence by suppressing spatzle-toll pathway in Drosophila. J Cell Physiol 229: 512-520. PubMed ID: 24343480

    Anjum, S. G., Xu, W., Nikkholgh, N., Basu, S., Nie, Y., Thomas, M., Satyamurti, M., Budnik, B. A., Ip, Y. T. and Veraksa, A. (2013). Regulation of Toll Signaling and Inflammation by beta-arrestin and the SUMO Protease Ulp1. Genetics. PubMed ID: 24077307

  • Ken Irvine Dept. of Molecular Biology and Biochemistry, Waksman Institute, Rutgers
    Rauskolb, C., Cervantes, E., Madere, F. and Irvine, K. D. (2019). Organization and function of tension-dependent complexes at adherens junctions. J Cell Sci 132(7). PubMed ID: 30837288

    Zhou, Z., Alegot, H. and Irvine, K. D. (2019). Oriented cell divisions are not required for Drosophila wing shape. Curr Biol 29(5): 856-864.e853. PubMed ID: 30799243

    Rauskolb, C., Cervantes, E., Madere, F. and Irvine, K. D. (2019). Organization and function of tension-dependent complexes at adherens junctions. J Cell Sci. PubMed ID: 30837288

    Misra, J. R. and Irvine, K. D. (2019). Early girl is a novel component of the Fat signaling pathway. PLoS Genet 15(1): e1007955. PubMed ID: 30699121

    Alegot, H., Markosian, C., Rauskolb, C., Yang, J., Kirichenko, E., Wang, Y. C. and Irvine, K. D. (2019). Recruitment of Jub by alpha-catenin promotes Yki activity and Drosophila wing growth. J Cell Sci. PubMed ID: 30659113

    Pan, Y., Alegot, H., Rauskolb, C. and Irvine, K. D. (2018). The dynamics of hippo signaling during Drosophila wing development. Development. PubMed ID: 30254143

    Misra, J.R. and Irvine, K.D. (2016). Vamana Couples Fat Signaling to the Hippo Pathway. Dev Cell 39(2):254-266. PubMed ID: 27746048

    Kuta, A., Mao, Y., Martin, T., Ferreira de Sousa, C., Whiting, D., Zakaria, S., Crespo-Enriquez, I., Evans, P., Balczerski, B., Mankoo, B., Irvine, K. D. and Francis-West, P. H. (2016). Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development 143: 2367-2375. PubMed ID: 27381226

    Ambegaonkar, A. A. and Irvine, K. D. (2015). Coordination of planar cell polarity pathways through Spiny legs. Elife 4. PubMed ID: 26505959

  • Guillaume Isabel University Toulouse
    Muria, A., Musso, P. Y., Durrieu, M., Portugal, F. R., Ronsin, B., Gordon, M. D., Jeanson, R. and Isabel, G. (2021). Social facilitation of long-lasting memory is mediated by CO(2) in Drosophila. Curr Biol. PubMed ID: 33740428

    Durrieu, M., Wystrach, A., Arrufat, P., Giurfa, M. and Isabel, G. (2020). Fruit flies can learn non-elemental olfactory discriminations. Proc Biol Sci 287(1938): 20201234. PubMed ID: 33171086

    Monier, M., Nobel, S., Danchin, E. and Isabel, G. (2018). Dopamine and Serotonin Are Both Required for Mate-Copying in Drosophila melanogaster. Front Behav Neurosci 12: 334. PubMed ID: 30687036

    Monier, M., Nobel, S., Isabel, G., Danchin, E. and Handling editor: David, B. (2018). Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr Zool 64(2): 251-258. PubMed ID: 30402066

    Placais, P. Y., de Tredern, E., Scheunemann, L., Trannoy, S., Goguel, V., Han, K. A., Isabel, G. and Preat, T. (2017). Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nat Commun 8: 15510. PubMed ID: 28580949

  • Ehud Isacoff Molecular and Cell Biology, University of California, Berkeley
    Li, Z., Zhang, Q., Chou, S. W., Newman, Z., Turcotte, R., Natan, R., Dai, Q., Isacoff, E. Y. and Ji, N. (2020). Fast widefield imaging of neuronal structure and function with optical sectioning in vivo. Sci Adv 6(19): eaaz3870. PubMed ID: 32494711

    Newman, Z. L., Hoagland, A., Aghi, K., Worden, K., Levy, S. L., Son, J. H., Lee, L. P. and Isacoff, E. Y. (2017). Input-specific plasticity and homeostasis at the Drosophila larval neuromuscular junction. Neuron. PubMed ID: 28285823

    Ball, R.W., Peled, E., Guerrero, G. and Isacoff, E.Y. (2015). BMP signaling and microtubule organization regulate synaptic strength. Neuroscience [Epub ahead of print]. PubMed ID: 25681521

    Peled, E. S., Newman, Z. L. and Isacoff, E. Y. (2014). Evoked and Spontaneous Transmission Favored by Distinct Sets of Synapses. Curr Biol. PubMed ID: 24560571

    Kauwe, G., Isacoff, E. Y. (2013) Rapid feedback regulation of synaptic efficacy during high-frequency activity at the Drosophila larval neuromuscular junction. Proc Natl Acad Sci U S A. PubMed ID: 23674684

    Peled, E. S. and Isacoff, E. Y. (2011). Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. Nat Neurosci 14: 519-526. PubMed ID: 21378971

  • David Ish-Horowicz MRC Laboratory of Molecular Biology
    Yang, L., Titlow, J., Ennis, D., Smith, C., Mitchell, J., Young, F. L., Waddell, S., Ish-Horowicz, D. and Davis, I. (2017). Single molecule fluorescence in situ hybridisation for quantitating post-transcriptional regulation in Drosophila brains. Methods. PubMed ID: 28651965

    Hayashi, R., Wainwright, S. M., Liddell, S. J., Pinchin, S. M., Horswell, S. and Ish-Horowicz, D. (2014). A Genetic Screen Based on In Vivo RNA Imaging Reveals Centrosome-Independent Mechanisms for Localizing gurken Transcripts in Drosophila. G3 (Bethesda). PubMed ID: 24531791

    Bullock, S. L., Ringel, I., Ish-Horowicz, D. and Lukavsky, P. J. (2010). A'-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat Struct Mol Biol 17: 703-709. PubMed ID: 20473315

    Vanrobays, E., Jennings, B. H. and Ish-Horowicz, D. (2010). Identification and mapping of induced chromosomal deletions using sequence polymorphisms. Biotechniques 48: 53-60. PubMed ID: 20078428

  • Yukio Ishikawa Laboratory of Applied Entomology, Tokyo
    Yamamoto, D. and Ishikawa, Y. (2013). Genetic and Neural Bases for Species-Specific Behavior in Drosophila Species. J Neurogenet. PubMed ID: 23806054

    Kayukawa, T., Minakuchi, C., Namiki, T., Togawa, T., Yoshiyama, M., Kamimura, M., Mita, K., Imanishi, S., Kiuchi, M., Ishikawa, Y. and Shinoda, T. (2012). Transcriptional regulation of juvenile hormone-mediated induction of Kruppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci U S A 109: 11729-11734. PubMed ID: 22753472

  • Afshan Ismat Biology, University of St. Thomas, Minnesota
    Gonsior, M. and Ismat, A. (2019). sli is required for proper morphology and migration of sensory neurons in the Drosophila PNS. Neural Dev 14(1): 10. PubMed ID: 31651354

    Pham, M. N., Schuweiler, M. and Ismat, A. (2018). The extracellular protease AdamTS-B inhibits vein formation in the Drosophila wing. Genesis. PubMed ID: 30296002

    Lhamo, T. and Ismat, A. (2015). The extracellular protease stl functions to inhibit migration of v'ch1 sensory neuron during Drosophila embryogenesis. Mech Dev 137: 1-10. PubMed ID: 25953091

    Ismat, A., Cheshire, A. M. and Andrew, D. J. (2013). The secreted AdamTS-A metalloprotease is required for collective cell migration. Development 140(9): 1981-1993. PubMed ID: 23536567

  • Takako Isshiki National Institute of Genetics, Mishima
    Kitajima, A., Fuse, N., Isshiki, T. and Matsuzaki, F. (2010). Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development. Dev Biol 347: 9-23. PubMed ID: 20599889

    Nakajima, A., Isshiki, T., Kaneko, K. and Ishihara, S. (2010). Robustness under functional constraint: the genetic network for temporal expression in Drosophila neurogenesis. PLoS Comput Biol 6: e1000760. PubMed ID: 20454677

  • Kei Ito Laboratory of Neural Circuits, University of Tokyo, Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo
    Tsubouchi, A., Yano, T., Yokoyama, T. K., Murtin, C., Otsuna, H. and Ito, K. (2017). Topological and modality-specific representation of somatosensory information in the fly brain. Science 358(6363): 615-623. PubMed ID: 29097543

    Matsuo, E., Seki, H., Asai, T., Morimoto, T., Miyakawa, H., Ito, K. and Kamikouchi, A. (2016). The organization of projection neurons and local neurons of the primary auditory center in the fruit fly Drosophila melanogaster. J Comp Neurol 24(6):1099-164. PubMed ID: 26762251

    Otsuna, H., Shinomiya, K. and Ito, K. (2014). Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Front Neural Circuits 8: 8. PubMed ID: 24574974

    Flood, T. F., Gorczyca, M., White, B. H., Ito, K. and Yoshihara, M. (2013). A Large-Scale Behavioral Screen to Identify Neurons Controlling Motor Programs in the Drosophila Brain. G3 (Bethesda). PubMed ID: 23934998

    Ito, M., Masuda, N., Shinomiya, K., Endo, K., Ito, K. (2013) Systematic Analysis of Neural Projections Reveals Clonal Composition of the Drosophila Brain. Curr Biol. PubMed ID: 23541729

    Ueno, T., Tomita, J., Tanimoto, H., Endo, K., Ito, K., Kume, S. and Kume, K. (2012). Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci 15: 1516-1523. PubMed ID: 23064381

    Aso, Y., Herb, A., Ogueta, M., Siwanowicz, I., Templier, T., Friedrich, A. B., Ito, K., Scholz, H. and Tanimoto, H. (2012). Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 8: e1002768. PubMed ID: 22807684

    Tanaka, N. K., Endo, K. and Ito, K. (2012). Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J Comp Neurol 520: 4067-4130. PubMed ID: 22592945

  • Elisa Izaurralde Max Planck Institute for Developmental Biology, Tübingen
    Xia, S., Ventura, I. M., Blaha, A., Sgromo, A., Han, S., Izaurralde, E. and Long, M. (2021). Rapid Gene evolution in an ancient post-transcriptional and translational regulatory system compensates for meiotic X chromosomal inactivation. Mol Biol Evol. PubMed ID: 34626117

    Ruscica, V., Bawankar, P., Peter, D., Helms, S., Igreja, C. and Izaurralde, E. (2019). Direct role for the Drosophila GIGYF protein in 4EHP-mediated mRNA repression. Nucleic Acids Res. PubMed ID: 31114929

    Sgromo, A., Raisch, T., Backhaus, C., Keskeny, C., Alva, V., Weichenrieder, O. and Izaurralde, E. (2017). Drosophila Bag-of-marbles directly interacts with the CAF40 subunit of the CCR4-NOT complex to elicit repression of mRNA targets. Rna [Epub ahead of print]. PubMed ID: 29255063

    Sgromo, A., Raisch, T., Bawankar, P., Bhandari, D., Chen, Y., Kuzuoğlu-Öztürk, D., Weichenrieder, O. and Izaurralde, E. (2017). A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin. Nat Commun 8: 14307. PubMed ID: 28165457

    Peter, D., Igreja, C., Weber, R., Wohlbold, L., Weiler, C., Ebertsch, L., Weichenrieder, O. and Izaurralde, E. (2015). Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Mol Cell 57: 1074-1087. PubMed ID: 25702871

    Raisch, T., Bhandari, D., Sabath, K., Helms, S., Valkov, E., Weichenrieder, O. and Izaurralde, E. (2016). Distinct modes of recruitment of the CCR4-NOT complex by Drosophila and vertebrate Nanos. EMBO J. PubMed ID: 26968986

    Peter, D., Weber, R., Kone, C., Chung, M. Y., Ebertsch, L., Truffault, V., Weichenrieder, O., Igreja, C. and Izaurralde, E. (2015). Mextli proteins use both canonical bipartite and novel tripartite binding modes to form eIF4E complexes that display differential sensitivity to 4E-BP regulation. Genes Dev 29: 1835-1849. PubMed ID: 26294658

    Igreja, C., Peter, D., Weiler, C. and Izaurralde, E. (2014). 4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nat Commun 5: 4790. PubMed ID: 25179781

    Chen, Y., Boland, A., Kuzuoglu-Ozturk, D., Bawankar, P., Loh, B., Chang, C. T., Weichenrieder, O. and Izaurralde, E. (2014). A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 54: 737-750. PubMed ID: 24768540

    Nishihara, T., Zekri, L., Braun, J. E. and Izaurralde, E. (2013). miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res 41: 8692-8705. PubMed ID: 23863838


  • Return to The Interactive Fly