Goosecoid 
 
 GSC is first detected at cellularization (Stage 4) as a  dorsoanterior stripe 2-3 cells wide, appearing in a strong horseshoe-like pattern across the dorsal side of the embryo anterior to the appearing cephalic furrow [Images]. This region corresponds to an extreme anterior-dorsal position of most insects, because the head neuraxis of Drosophila is bent dorsally.   At germband extension (Stage 8) GSC is down-regulated in the dorsal-most region of the embryo and the horseshoe pattern resolves into a large cluster of cells on each side of the presumptive head.  These positive cells migrate laterally and, by stage 10, GSC is restricted to three small clusters that migrate inside the embryo at germband retraction and are then associated with 
 the brain hemispheres  (Goriely, 1996 and Hahn, 1996).  
 A second domain of expression is seen as a cluster of cells at the time the stomodeum is first visible.  This cluster follows the movements of foregut invagination and is incorporated into the roof of the stomodeum abutting the endodermic anterior midgut territory.  These cells appear to be part of the anterior foregut, the ring gland  and the stomatogastric nervous system, a tissue that is modified in a mutant lacking Gsc function (Goriely, 1996 and Hahn, 1996)
 Abe, N., Dror, I., Yang, L., Slattery, M., Zhou, T., Bussemaker, H. J., Rohs, R. and Mann, R. S. (2015). Deconvolving the recognition of DNA shape from sequence. Cell 161(2): 307-318. PubMed ID: 25843630 
 Angerer, L. M., et al. (2001). Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development 128: 4393-4404. 11714666 
 Armes, N. A. and Smith, J. C. (1997). The ALK-2 and ALK-4 activin receptors transduce
distinct mesoderm-inducing signals during early Xenopus
development but do not co-operate to establish
thresholds. Development 124(19): 3797-3804. PubMed ID: 9367435
 
 Artinger, M., et al. (1997).   Interaction of goosecoid and brachyury in Xenopus mesoderm patterning. Mech. Dev. 65(1-2): 187-196. PubMed ID: 9256355
 Belo, J. A., et al. (1998).  The prechordal midline of the chondrocranium is defective in Goosecoid-1 mouse mutants. Mech. Dev. 72(1-2): 15-25. PubMed ID: 9533949
 Broun, M., Sokol, S. and Bode, H. R. (1999).   Cngsc, a homologue of goosecoid, participates in the patterning of the head,
and is expressed in the organizer region of Hydra.  Development 126: 5245-5254. PubMed ID: 10556050
 Bruce, A. E. E., et al. (2003). The maternally expressed zebrafish T-box gene eomesodermin regulates organizer formation. Development 130: 5503-5517. 14530296  
 Candia, A. F. and Wright, C. V. (1995). The expression pattern of Xenopus Mox-2 implies a role in
initial mesodermal differentiation. Mech Dev 52: 27-36. PubMed ID: 7577672
 
 Conway, S. J. (1999). Novel expression of the Goosecoid transcription factor in the embryonic
mouse heart. Mech. Dev. 81(1-2): 187-91. PubMed ID: 10330498
 Croce, J., Lhomond, G. and Gache, C. (2003). Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis. Mech. Dev. 120: 561-572. 12782273 
 Ding, X, Hausen, P. and Steinbeisser, H. (1998). Pre-MBT patterning of early gene regulation in Xenopus: the role of
the cortical rotation and mesoderm induction. Mech. Dev. 70: 15-24
 
 Dixon, Fox, M. and Bruce, A. E. (2009). Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b. Development 136(10): 1675-85. PubMed Citation: 19369398
 
 Ecochard, V., et al. (1998).  A novel xenopus mix-like gene milk involved in the control of the
endomesodermal fates. Development 125(14): 2577-2585. PubMed ID: 9510021
 
 Fan, M. J. and Sokol, S. Y. (1997).  A role for Siamois in Spemann organizer formation. Development 124(13):  2581-2589. PubMed ID: 9217000
 Ferreiro, B., et al. (1998).  Antimorphic goosecoids.  Development 125(8): 1347-1359. PubMed Citation: 9502717
 Filosa, S., et al. (1997).   Goosecoid and HNF-3ß genetically interact to regulate neural tube patterning during mouse embryogenesis. Development 124(14): 2843-2854. PubMed Citation: 9226455
 Galili, N., et al. (1998).  Gscl, a gene within the minimal DiGeorge critical region,
is expressed in primordial germ cells and the developing
pons. Dev. Dyn. 212(1): 86-93. PubMed Citation: 9603426
 Germain, S., et al. (2000). Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif.  Genes Dev. 14: 435-451. PubMed Citation: 10691736
 
 González-Gaitan, M. and Jäckle, H. (1995). Invagination centers within the Drosophila stomatogastric nervous system anlage are positioned by Notch-mediated signaling which is spatially controlled through wingless.  Development 121: 2313-25. PubMed Citation: 7671798
 Goriely, A., et al. (1996).  A functional homologue of goosecoid in Drosophila. Development 122: 1641-1650. PubMed Citation: 8625850
 Hahn, M. and  Jackle, H. (1996).  Drosophila goosecoid participates in neural development but not in
body axis formation. EMBO J 15 (12): 3077-3084. PubMed Citation: 8670808
 Hashimoto-Partyka, M. K., et al. (2003).  Nodal signaling in Xenopus gastrulae is cell-autonomous and patterned by ß-Catenin. Dev. Bio. 253: 125-138. 12490202 
 Heanue, T. A., et al. (1997). Goosecoid misexpression alters the morphology
and Hox gene expression of the developing chick
limb bud. Mech. Dev. 69(1-2): 31-37
 Jimenez, G., Verrijzer, C. P. and Ish-Horowicz, D. (1999). A conserved motif in Goosecoid mediates Groucho-dependent
repression in Drosophila embryos. Mol. Cell. Biol. 19(3): 2080-7. PubMed Citation: 10022895
 
 Jones, C. M., et al. (1995).  Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation.  Development 121: 3651-62
 Joore, J., et al (1997).  Domains of retinoid signalling and neurectodermal expression of
zebrafish otx1 and goosecoid are mutually exclusive. Biochem. Cell. Biol. 75(5): 601-612
 Joore, J., et al. (1998).  Protein kinase A is involved in the induction of early mesodermal marker genes by activin. Mech. Dev. 79(1-2): 5-16
 Jung, C., Schnepf, M., Bandilla, P., Unnerstall, U. and Gaul, U. (2019). High sensitivity measurement of transcription factor-DNA binding affinities by competitive titration using fluorescence microscopy. J Vis Exp(144). PubMed ID: 30799844 
 Jung, C., Bandilla, P., von Reutern, M., Schnepf, M., Rieder, S., Unnerstall, U. and Gaul, U. (2018). True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy. Nat Commun 9(1): 1605. PubMed ID: 29686282 
 Kessler, D. S. (1997). Siamois is required for formation of Spemann's organizer. Proc. Natl. Acad. Sci. 94(24): 13017-13022
 
 Knoetgen, H., Viebahn, C. and Kessel, M.  (1999). Head induction in the chick by primitive endoderm of mammalian,
but not avian origin. Development 126(4): 815-825
>  
  Ku, M., et al. (2005).  Positive and negative regulation of the transforming growth factor beta/activin target gene goosecoid by the TFII-I family of transcription factors. Mol. Cell. Biol. 25(16): 7144-57. 16055724  
 Labbe, E., et al. (1998).   Smad2 and Smad3 positively and negatively regulate TGF
beta-dependent transcription through the forkhead DNA-binding protein
FAST2. Mol. Cell (1): 109-20
 Lanctot, C., Lamolet, B. and Drouin, J. (1997).  The bicoid-related homeoprotein Ptx1 defines the most anterior
domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124(14): 2807-2817
 Latinkic, B. V. and Smith, J. C. (1999).  Goosecoid and Mix.1 repress Brachyury expression and are required
for head formation in Xenopus. Development 126(8): 1769-1779 
 Laurent, M. N., et al. (1997). The Xenopus homeobox gene twin mediates Wnt
induction of goosecoid in establishment of Spemann's
organizer. Development 124(23): 4905-4916
 Lee, S. Y., Yoon, J., Lee, H. S., Hwang, Y. S., Cha, S. W., Jeong, C. H., Kim, J. I., Park, J. B., Lee, J. Y., Kim, S., Park, M. J., Dong, Z. and Kim, J. (2011). The function of heterodimeric AP-1 comprised of c-Jun and c-Fos in activin mediated Spemann organizer gene expression. PLoS One 6: e21796. PubMed ID: 21829441
 Lemaire, L., et al. (1997).  Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos.  Development 124: 1443-52
 Li, J., Sagendorf, J. M., Chiu, T. P., Pasi, M., Perez, A. and Rohs, R. (2017). Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding. Nucleic Acids Res 45(22): 12877-12887. PubMed ID: 29165643 
 Mailhos, C., Andre, S., Mollereau, B., Goriely, A., Hemmati-Brivanlou, A. and Desplan, C. (1998). Drosophila Goosecoid requires a conserved heptapeptide for repression of paired-class homeoprotein activators. Development 125: 937-947. PubMed ID: 9449676
	
 McKendry, R., Harland, R. M. and Stachel, S. E. (1998).   Activin-induced factors maintain goosecoid transcription through a
paired homeodomain binding site. Dev. Biol. 204(1): 172-86.   
 Messenger, N. J., et al. (2005). Functional specificity of the Xenopus T-domain protein Brachyury
is conferred by its ability to interact with Smad1. Dev. Cell 8(4): 599-610. 15809041
 Mochizuki, T., et al. (2000).  Xlim-1 and LIM domain binding protein 1
cooperate with various transcription factors
in the regulation of the goosecoid promoter. Dev. Bio. 224: 470-485. PubMed ID: 10926781
 Niehrs, C., et al. (1993).  The homeobox gene goosecoid controls cell migration in
Xenopus embryos. Cell 72: 491-503
 Papin, C. and Smith, J. C. (2000). Gradual refinement of activin-induced thresholds
requires protein synthesis. Dev. Biol. 217: 166-172. PubMed ID: 10625543
 Parry, D. A., Logan, C. V., Stegmann, A. P., Abdelhamed, Z. A., Calder, A., Khan, S., Bonthron, D. T., Clowes, V., Sheridan, E., Ghali, N., Chudley, A. E., Dobbie, A., Stumpel, C. T. and Johnson, C. A. (2013). SAMS, a syndrome of short stature, auditory-canal atresia, mandibular hypoplasia, and skeletal abnormalities is a unique neurocristopathy caused by mutations in Goosecoid. Am J Hum Genet. 93(6): 1135-42. PubMed ID: 24290375
 Re'em-Kalma, Y., Lamb, T. and Frank, D. (1995). Competition between noggin and bone morphogenetic
protein 4 activities may regulate dorsalization during
Xenopus development.  Proc. Natl. Acad. Sci. 92: 12141-12145
 Reid, C. D., Zhang, Y., Sheets, M. D. and Kessler, D. S. (2012). Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. Dev Biol 368: 231-241. PubMed ID: 22627292
 Ring, C., et al. (2002). The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling. Genes Dev. 16: 820-835. 11937490 
 
 Rivera-Perez, J. A., Wakamiya, M.  and Behringer, R. R. (1999). Goosecoid acts cell autonomously in mesenchyme-derived tissues during
craniofacial development. Development 126: 3811-3821. PubMed ID: 10433910 
 Rube, H. T., Rastogi, C., Kribelbauer, J. F. and Bussemaker, H. J. (2018). A unified approach for quantifying and interpreting DNA shape readout by transcription factors. Mol Syst Biol 14(2): e7902. PubMed ID: 29472273 
 
 Schmidt-Ott, et al. (1994).  Number, identity, and sequence of the Drosophila head segments as revealed by neural elements and their deletion patterns in mutants.  Proc. Natl. Acad. Sci. 91: 8363-8367. PubMed Citation: 7915837
 Schulte-Merker, S., et al. (1994).   Expression of zebrafish goosecoid and no tail gene
products in wild-type and mutant no tail embryos.
Development 120: 843-852
 Smith, S. T. and Jaynes, J. B. (1996).  A conserved region of Engrailed, shared among all en-, gsc-, Nk1-,
Nk2- and msh-class homeoproteins, mediates active transcriptional
repression in vivo. Development 122(10): 3141-3150
 Sudou, N., Yamamoto, S., Ogino, H. and Taira, M. (2012). Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 139: 1651-1661. PubMed ID: 22492356
 Thisse, C., et al. (1994).Goosecoid expression in neurectoderm and mesendoderm
is disrupted in zebrafish cyclops gastrulas. Dev Biol 164: 420-429
 Tolkunova, E. N., Fujioka, M., Kobayashi, M., Deka, D. and Jaynes, J. B. (1998). Two distinct types of repression domain in engrailed: one interacts with the groucho corepressor and is preferentially active on integrated target genes. Mol Cell Biol 18: 2804-2814. PubMed ID: 9566899
 Toyama, R., et al. (1995).  Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish.  Development 121: 383-391
 Tucker, A. S., et al. (2004). Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution. Development 131: 1235-1245. 14973294 
 Wacker, S., et al. (1998). Patterns and control of cell motility in the Xenopus gastrula. Development 125(10): 1931-1942. PubMed ID: 9550725
 Yamada, G., et al. (1995).  Targeted mutation of the murine goosecoid gene results in
craniofacial defects and neonatal death. Development 121: 2917-2922
 Yamanaka, Y., et al. (1998). A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes Dev. 12(15): 2345-2353
 Yao, J. and Kessler, D. S. (2001). Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann's organizer. Development 128: 2975-2987. 11532920 
 
 Yasuo, H. and Lemaire, P. (2001).  Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic program in Xenopus gastrulae.  Development 128: 3783-3793. 11585804 
 
 Zhou, T., Yang, L., Lu, Y., Dror, I., Dantas Machado, A. C., Ghane, T., Di Felice, R. and Rohs, R. (2013). DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res 41(Web Server issue): W56-62. PubMed ID: 23703209
 Zhu, L., et al. (1999).   Goosecoid regulates the neural inducing strength of the mouse node. Dev. Biol. 216(1): 276-81. PubMed ID: 10588878
 Zoltewicz, J. S. and Gerhart, J. C. (1997).  The Spemann organizer of Xenopus is patterned along its
anteroposterior axis at the earliest gastrula stage. Dev. Biol. 192(2): 482-491
 
 Goosecoid: 
Biological Overview 
| Evolutionary Homologs 
| Regulation 
| Developmental Biology 
 
date revised: 20 April 2021
Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.
The Interactive Fly resides on the
Society for Developmental Biology's Web server.