The Interactive Fly

Zygotically transcribed genes

RAS Pathway, EGF receptor-ligand complex

What is the ras pathway?

Genome-wide genetic screen identified the link between dG9a and epidermal growth factor receptor signaling pathway in vivo

In vivo severity ranking of Ras pathway mutations associated with developmental disorders

Divergent effects of intrinsically active MEK variants on developmental Ras signaling


Genes of the ras pathway and Egfr receptor-ligand complex





What is the ras pathway?

The ras pathway is a signal transduction cascade. In the Drosophila eye the receptor Sevenless is borne by cells that have the potential to develop into R7 photoreceptors, the last of eight photoreceptors to differentiate in each ommatidium. Signals from the ligand Boss, a seven pass transmembrane protein that serves as the ligand for Sevenless, triggers autophosphorylation in the Sevenless receptor tyrosine kinase. Phosphorylated Sevenless binds the adaptor protein DRK which subsequently interacts with SOS, a guanine nucleotide-releasing protein, which then removes GDP from inactive RAS and substitutes GTP. The substitution of GTP for GDP activates RAS protein.

Up to this point ras pathway proteins functions not as a soup of ingredients but as an ordered complex assembled in a successive fashion to the cytoplasmic tail of the receptor Sevenless. Signal amplification is not the object, but rather assembly of a multimolecular membrane associated protein complex. Subsequent events, the activation of Draf, initiate a signal transduction cascade phosphorylating and successively activating Dmek and Rolled. This cascade does in fact serve to amplify the Sevenless signal, and results in the phosphorylation and activation of the transcription factor Pointed, which then determines R7 fate.

The ras pathway is used by four receptors, each triggered by different ligands in different tissues. The targets of Ras signaling between tissues also differ. Thus the ras pathway serves to transduce signals between receptor tyrosine kinases and the nucleus. Recent studies show that there are parallel pathways to the RAS1 to Rolled phosphorylation cascade, even in Drosophila. For a newly characterized example see Hemipterous and the dorsal closure pathway. The components of these alternative pathways are currently being investigated.

Genome-wide genetic screen identified the link between dG9a and epidermal growth factor receptor signaling pathway in vivo

G9a is one of the histone H3 Lys 9 (H3K9) specific methyltransferases first identified in mammals. Drosophila G9a (dG9a) has been reported to induce H3K9 dimethylation in vivo, and the target genes of dG9a were identified during embryonic and larval stages. Although dG9a is important for a variety of developmental processes, the link between dG9a and signaling pathways are not addressed yet.By genome-wide genetic screen, taking advantage of the rough eye phenotype of flies that over-express dG9a in eye discs, this study identified 16 genes that enhanced the rough eye phenotype induced by dG9a over-expression. These 16 genes included Star, anterior open, bereft and F-box and leucine-rich repeat protein 6 which are components of Epidermal growth factor receptor (EGFR) signaling pathway. When dG9a over-expression was combined with mutation of Star, differentiation of R7 photoreceptors in eye imaginal discs as well as cone cells and pigment cells in pupal retinae was severely inhibited. Furthermore, the dG9a over-expression reduced the activated ERK signals in eye discs. These data demonstrate a strong genetic link between dG9a and the EGFR signaling pathway (Shimazi, 2016).

In vivo severity ranking of Ras pathway mutations associated with developmental disorders

Germ-line mutations in components of the Ras/MAPK pathway result in developmental disorders called RASopathies, affecting about 1/1,000 human births. Rapid advances in genome sequencing make it possible to identify multiple disease-related mutations, but there is currently no systematic framework for translating this information into patient-specific predictions of disease progression. As a first step toward addressing this issue, a quantitative, inexpensive, and rapid framework was developed that relies on the early zebrafish embryo to assess mutational effects on a common scale. Using this assay, sixteen mutations reported in MEK1 (see Drosophila Downstream of raf1), a MAPK kinase, were assessed and a robust ranking of these mutations is provided. Mutations found in cancer were found to be are more severe than those found in both RASopathies and cancer, which, in turn, are generally more severe than those found only in RASopathies. Moreover, this rank is conserved in other zebrafish embryonic assays and Drosophila-specific embryonic and adult assays, suggesting that this ranking reflects the intrinsic property of the mutant molecule. Furthermore, this rank is predictive of the drug dose needed to correct the defects. This assay can be readily used to test the strengths of existing and newly found mutations in MEK1 and other pathway components, providing the first step in the development of rational guidelines for patient-specific diagnostics and treatment of RASopathies (Jindal, 2017).

Divergent effects of intrinsically active MEK variants on developmental Ras signaling

Germline mutations in Ras pathway components are associated with a large class of human developmental abnormalities, known as RASopathies, that are characterized by a range of structural and functional phenotypes, including cardiac defects and neurocognitive delays. Although it is generally believed that RASopathies are caused by altered levels of pathway activation, the signaling changes in developing tissues remain largely unknown. This study used assays with spatiotemporal resolution in Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish) to quantify signaling changes caused by mutations in MAP2K1 (encoding MEK), a core component of the Ras pathway that is mutated in both RASopathies and cancers in humans. Surprisingly, it was discovered that intrinsically active MEK variants can both increase and reduce the levels of pathway activation in vivo. The sign of the effect depends on cellular context, implying that some of the emerging phenotypes in RASopathies may be caused by increased, as well as attenuated, levels of Ras signaling (Goyal, 2017).

proteins associated with the ras pathway


References

Goyal, Y., Jindal, G. A., Pelliccia, J. L., Yamaya, K., Yeung, E., Futran, A. S., Burdine, R. D., Schupbach, T. and Shvartsman, S. Y. (2017). Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nat Genet [Epub ahead of print]. PubMed ID: 28166211

Jindal, G. A., Goyal, Y., Yamaya, K., Futran, A. S., Kountouridis, I., Balgobin, C. A., Schupbach, T., Burdine, R. D. and Shvartsman, S. Y. (2017). In vivo severity ranking of Ras pathway mutations associated with developmental disorders. Proc Natl Acad Sci U S A [Epub ahead of print]. PubMed ID: 28049852

Shimaji, K., Konishi, T., Yoshida, H., Kimura, H. and Yamaguchi, M. (2016). Genome-wide genetic screen identified the link between dG9a and epidermal growth factor receptor signaling pathway in vivo. Exp Cell Res [Epub ahead of print]. PubMed ID: 27343629

Zygotically transcribed genes

Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.