Abruzzi, K. C., et al. (2011). Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev. 25(22): 2374-86. PubMed Citation: 22085964

Akashi, M. and Nishida, E. (2000). Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 14: 645-649. PubMed Citation: 10733524

Akashi, M., Okamoto, A., Tsuchiya, Y., Todo, T., Nishida, E. and Node, K. (2014). A positive role for PERIOD in mammalian circadian gene expression. Cell Rep 7: 1056-1064. PubMed ID: 24794436

Akiyama, M., et al. (1999). Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J. Neurosci. 19(3): 1115-1121. PubMed Citation: 9920673

Akten, B., et al. (2003). A role for CK2 in the Drosophila circadian oscillator. Nature Neurosci. 6: 251-257. 12563262

Akten, B., Tangredi, M. M., Jauch, E., Roberts, M. A., Ng, F., Raabe, T. and Jackson, F. R. (2009). Ribosomal s6 kinase cooperates with casein kinase 2 to modulate the Drosophila circadian molecular oscillator. J Neurosci 29: 466-475. PubMed ID: 19144847

Albrecht, U., et al. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91(7): 1055-1064. PubMed Citation: 9428527

Allada, R., et al. (1998). A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93: 791-804. PubMed Citation: 9630223

Allen, V.W., O'Connor, R.M., Ulgherait, M., Zhou, C.G., Stone, E.F., Hill, V.M., Murphy, K.R., Canman, J.C., Ja, W.W. and Shirasu-Hiza, M.M. (2015). period-regulated feeding behavior and TOR signaling modulate survival of infection. Curr Biol 26(2):184-94. PubMed ID: 26748856

Andretic, R., Chaney, S. and Hirsh, J. (1999). Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285: 1066-8. PubMed Citation: 10446052

Andretic, R. and Hirsh, J. (2000). Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. 97: 1873-1878. PubMed Citation: 10677549

Antoch, M. P., et al. (1997). Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell 89: 655-667. PubMed Citation: 9160756

Asai, M., et al. (2001). Visualization of mPer1 transcription in vitro: NMDA induces a rapid phase shift of mPer1 gene in cultured SCN. Curr. Biol. 11: 1524-1527. 11591320

Asher, G., et al. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2): 317-28. PubMed Citation: 18662546

Bae, K., et al. (2001). Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525-536. 11395012

Bulthuis, N., Spontak, K. R., Kleeman, B. and Cavanaugh, D. J. (2019). Neuronal activity in non-LNv clock cells is required to produce free-running rest: activity rhythms in Drosophila. J Biol Rhythms 34(3): 249-271. PubMed ID: 30994046

Bao, S., et al. (2001). The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA. J. Neurosci. 21(18): 7117-7126. 11549722

Baylies, M. K., Vosshall, L. B., Sehgal, A. and Young, M.W. (1992). New short period mutations of the Drosophila clock gene per. Neuron 9: 575-581. PubMed Citation: 1524831

Bazalova, O. and Dolezel, D. (2017). Daily activity of the housefly, Musca domestica, is influenced by temperature independence of 3' UTR period gene splicing. G3 (Bethesda). PubMed ID: 28620087

Beaver, L. M., et al. (2002). Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc. Natl. Acad. Sci. 99: 2134-2139. 11854509

Beaver, L. M. and Giebultowicz, J. M. (2004). Regulation of Copulation Duration by period and timeless in Drosophila melanogaster. Curr. Biol. 14: 1492-1497. 15324667

Bechstein, P., Rehbach, N. J., Yuhasingham, G., Schurmann, C., Gopfert, M., Kossl, M. and Maronde, E. (2014). The clock gene Period1 regulates innate routine behaviour in mice. Proc Biol Sci 281: 20140034. PubMed ID: 24598427

Beckwith, E. J., Hernando, C. E., Polcownuk, S., Bertolin, A. P., Mancini, E., Ceriani, M. F. and Yanovsky, M. J. (2017). Rhythmic behavior is controlled by the SRm160 splicing factor in Drosophila melanogaster. Genetics [Epub ahead of print]. PubMed ID: 28801530

Belvin, M. P., Zhou, H. and Yin, J. C. (1999). The Drosophila dCREB2 gene affects the circadian clock. Neuron 22(4): 777-87. PubMed Citation: 10230797

Ben-Shlomo, R., Ritte, U. and Nevo, E. (1996). Circadian rhythm and the per ACNGGN repeat in the mole rat, Spalax ehrenbergi. Behav. Genet. 26: 177-184. PubMed Citation: 8639153

Blanchardon, E., Grima, B., Klarsfeld, A., Chelot, E., Hardin, P. E., Preat, T., and Rouyer, F. (2001). Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression. Eur. J. Neurosci. 13: 871-888. 11264660

Boothroyd, C. E., Wijnen, H., Naef, F., Saez, L. and Young, M. W. (2007). Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 3(4): e54. PubMed citation: 17411344

Bouchard-Cannon, P., Mendoza-Viveros, L., Yuen, A., Kaern, M. and Cheng, H. Y. (2013). The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep 5(4): 961-73. PubMed ID: 24268780

Brandes, C., et al. (1996). Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16: 687-692. 8607986

Brown, S. A., et al. (2005). PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308(5722): 693-6. PubMed Citation: 15860628. 15860628

Cao, W. and Edery, I. (2017). Mid-day siesta in natural populations of D. melanogaster from Africa exhibits an altitudinal cline and is regulated by splicing of a thermosensitive intron in the period clock gene. BMC Evol Biol 17(1): 32. PubMed ID: 28114910

Chang, D. C. and Reppert, S. M. (2003). A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK:CYCLE-mediated transcription. Curr. Biol. 13: 758-762. 12725734

Chaves, I., et al. (2006). Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol. Cell. Biol. 26(5): 1743-53. 16478995

Chen R, et al. (2009). Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 36: 417-430. PubMed Citation: 19917250

Cheng, Y., Gvakharia, B. and Hardin, P. E. (1998). Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics. Mol. Cell. Biol. 18(11): 6505-14. PubMed Citation: 9774666

Cheng, P., et al. (2001). Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 20: 101-8. 11226160

Chiu, J. C., Vanselow, J. T., Kramer, A. and Edery, I. (2008). The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev. 22(13): 1758-72. PubMed Citation: 18593878

Chiu, J. C., Ko, H. W. and Edery, I. (2011). NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 145(3): 357-70. PubMed Citation: 21514639

Chiu, J. C. and Edery, I. (2015). Identification of light-sensitive phosphorylation sites on PERIOD that regulate the pace of circadian rhythms in Drosophila. Mol Cell Biol 36(6):855-70. PubMed ID: 26711257

Citri, Y., et al. (1987). A family of unusually spliced bioloically active transcripts encoded by the Drosophila clock gene. Nature 326: 42-47. PubMed Citation: 3102970

Claridge-Chang, A., et al. (2001). Circadian regulation of gene expression systems in the Drosophila head. Neuron 32: 657-671. 11719206

Collins, B. H., Rosato, E. and Kyriacou, C. P. (2004). Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl. Acad. Sci. 101: 1945-1950. 14766972

Collins, B. H., et al. (2005). Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila. Proc. Natl. Acad. Sci. 102: 19021-19026. 16361445

Collins, B., Mazzoni, E. O., Stanewsky, R. and Blau, J. (2006). Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr. Biol. 16(5): 441-9. 16527739

Collett, M. A., et al. (2001). Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol. Cell. Biol. 21: 2619-2628. 11283242

Costa, R., et al. (1992). A latitudinal cline in a Drosophila clock gene. Proc. Royal Soc. London B. 250: 43-49. PubMed Citation: 1361061

Crosthwaite, S. K., Dunlap, J. C. and Loros, J. J. (1997). Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276(5313): 763-9. 9115195

Curtin, K., Huang, Z.J. and Rosbash, M. (1995). Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14: 365-372. PubMed Citation: 7857645

Darlington, T. K., et al. (1998). Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280(5369): 1599-1603. 98279147

de la Iglesia, H. O., et al. (2004). Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 14: 796-800. 15120072

Delventhal, R., O'Connor, R. M., Pantalia, M. M., Ulgherait, M., Kim, H. X., Basturk, M. K., Canman, J. C. and Shirasu-Hiza, M. (2019). Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. Elife 8. PubMed ID: 31613218

Dembinska, M. E., et al. (1997). Circadian cycling of a PERIOD-beta-galactosidase fusion protein in Drosophila: evidence for cyclical degradation. J. Biol. Rhythms 12(2): 157-72. PubMed Citation: 9090569

Doi, M., et al. (2001). Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc. Natl. Acad. Sci. Vol. 98: 8089-8094. 11427718

Doi, M., et al. (2004). Negative control of circadian clock regulator E4BP4 by Casein kinase I-mediated phosphorylation. Curr. Biol. 14: 975-980. 15182670

Donlea, J. M., Ramanan, N. and Shaw, P. J. (2009). Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324(5923): 105-8. PubMed Citation: 19342592

Durgan, D. J., et al. (2006). The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J. Biol. Chem. 281(34): 24254-69. 16798731

Dusik, V., Senthilan, P. R., Mentzel, B., Hartlieb, H., Wulbeck, C., Yoshii, T., Raabe, T. and Helfrich-Forster, C. (2014). The MAP kinase p38 is part of Drosophila melanogaster's circadian clock. PLoS Genet 10: e1004565. PubMed ID: 25144774

Edery, I., et al. (1994). Temporal phosphorylation of the Drosophila period protein. Proc. Nat'l. Acad. Sci. 91: 2260-2264. 8134384

Emery, I. F., et al. (1997). Rhythms of Drosophila period gene expression in culture. Proc. Natl. Acad. Sci. 94: 4092-4096. 9108110

Emery, P., So, W. V., Kaneko, M., Hall, J. C. and Rosbash, M. (1998). CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5): 669-79. PubMed Citation: 9845369

Etkin, A., et al. (2006). A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50(1): 127-43. PubMed Citation: 16600861

Ewer, J., Hamblen-Coyle, M., Rosbash, M. and Hall, J. C. (1990). Requirement for period gene expression in the adult and not during development for locomotor activity rhythms of imaginal Drosophila melanogaster. J. Neurogenet. 7: 31-73. PubMed Citation: 2129172

Ewer, J., et al. (1992). Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavior rhythms. J. Neurosci. 12: 3321-49. PubMed Citation: 1382123

Fan, J. Y., Preuss, F., Muskus, M. J., Bjes, E. S. and Price, J. L. (2009). Drosophila and vertebrate casein kinase Idelta exhibits evolutionary conservation of circadian function. Genetics 181(1): 139-52. PubMed Citation: 18957703

Fan, J. Y., Agyekum, B., Venkatesan, A., Hall, D. R., Keightley, A., Bjes, E. S., Bouyain, S. and Price, J. L. (2013). Noncanonical FK506-binding protein BDBT binds Dbt to enhance its circadian function and forms foci at night. Neuron 80: 984-996. PubMed ID: 24210908

Fang, Y., Sathyanarayanan, S. and Sehgal, A. (2007). Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev 21: 1506-1518. Medline abstract: 17575052

Foltenyi, K., Greenspan, R. J. and Newport, J. W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neurosci. 10: 1160-1167. PubMed Citation: 17694052

Fropf, R., Zhou, H. and Yin, J. C. P. (2018). The clock gene period differentially regulates sleep and memory in Drosophila. Neurobiol Learn Mem [Epub ahead of print]. PubMed ID: 29474956

Fu, J., Murphy, K.A., Zhou, M., Li, Y.H., Lam, V.H., Tabuloc, C.A., Chiu, J.C. and Liu, Y. (2016). Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD. Genes Dev 30: 1761-1775. PubMed ID: 27542830

Fu, L., et al. (2002). The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111: 41-50. 12507431

Fuchs, S. Y., Spiegelman, V. S. and Kumar, K. G. (2004). The many faces of β-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer. Oncogene 23: 2028-2036. PubMed Citation: 15021890

Fuchikawa, T., Beer, K., Linke-Winnebeck, C., Ben-David, R., Kotowoy, A., Tsang, V. W. K., Warman, G. R., Winnebeck, E. C., Helfrich-Forster, C. and Bloch, G. (2017). Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open Biol 7(6). PubMed ID: 28615472

Fujii, S., Krishnan, P., Hardin, P. and Amrein, H. (2007). Nocturnal male sex drive in Drosophila. Curr. Biol. 17(3): 244-51. Medline abstract: 17276917

Fujii, S., Emery, P. and Amrein, H. (2017). SIK3-HDAC4 signaling regulates Drosophila circadian male sex drive rhythm via modulating the DN1 clock neurons. Proc Natl Acad Sci U S A 114(32): E6669-e6677. PubMed ID: 28743754

Fukuto, H. S., et al. (2004). G protein-coupled receptor kinase function is essential for chemosensation in C. elegans. Neuron 42: 581-593. PubMed Citation: 15157420

Garbe, D. S., Fang, Y., Zheng, X., Sowcik, M., Anjum, R., Gygi, S. P. and Sehgal, A. (2013). Cooperative Interaction between Phosphorylation Sites on PERIOD Maintains Circadian Period in Drosophila. PLoS Genet 9: e1003749. PubMed ID: 24086144

Garceau, N. Y., et al. (1997). Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein Frequency. Cell 89: 469-476. PubMed Citation: 9150146

Gentile, C., Sehadova, H., Simoni, A., Chen, C. and Stanewsky, R. (2013). Cryptochrome antagonizes synchronization of Drosophila's circadian clock to temperature cycles. Curr Biol 23: 185-195. PubMed ID: 23333312

Giebultowicz, J. M. and Hege, D. M. (1997). Circadian clock in Malpighian tubules. Nature 386: 664. PubMed Citation: 9109483

Glaser, F. T. and Stanewsky, R. (2005). Temperature synchronization of the Drosophila circadian clock. Curr. Biol. 15: 1352-1363. PubMed Citation: 16085487

Glossop, N. R., Lyons, L. C. and Hardin, P. E. (1999). Interlocked feedback loops within the Drosophila circadian oscillator. Science 286(5440): 766-8. PubMed Citation: 10531060

Goda, T., et al. (2011). Adult circadian behavior in Drosophila requires developmental expression of cycle, but not period. PLoS Genet. 7(7): e1002167. PubMed Citation: 21750685

Goda, T., Sharp, B. and Wijnen, H. (2014). Temperature-dependent resetting of the molecular circadian oscillator in Drosophila. Proc Biol Sci 281(1793) [Epub ahead of print]. PubMed ID: 25165772

Gör, M., et al. (2002). A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J. 20: 7074-7084. 11742984

Griffin, E. A., Staknis, D. and Weitz, C. J. (1999). Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286(5440): 768-71. PubMed Citation: 10531061

Grima, B., et al. (2002). The F-box protein Slimb controls the levels of clock proteins Period and Timeless. Nature 420: 178-182. 12432393

Grima, B., Chelot, E., Xia. R. and Rouyer, F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431: 869-873. 15483616

Grima, B., Dognon, A., Lamouroux, A., Chélot, E., Rouyer, F. (2012). CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock. PLoS Biol. 10(8): e1001367. PubMed Citation: 22879814

Hamblen, M. J., et al. (1998). Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics 149(1): 165-178. PubMed Citation: 9584094

Hanafusa, S., Kawaguchi, T., Umezaki, Y., Tomioka, K. and Yoshii, T. (2013). Sexual interactions influence the molecular oscillations in DN1 pacemaker neurons in Drosophila melanogaster. PLoS One 8: e84495. PubMed ID: 24367668

Hao, H., Allen, D. L. and Hardin, P. E. (1997). A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol. Cell. Biol. 17(7): 3687-3693. PubMed Citation: 9199302

Hao, H., et al. (1999). The 69 bp circadian regulatory sequence (CRS) mediates per-like developmental, spatial, and circadian expression and behavioral rescue in Drosophila. J. Neurosci. 19(3): 987-94. PubMed Citation: 9920662

Hardin, P.E., Hall, J.C. and Rosbash, M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343: 536-540. PubMed Citation: 210547

Harper, R. E., Dayan, P., Albert, J. T. and Stanewsky, R. (2016). Sensory conflict disrupts activity of the Drosophila circadian network. Cell Rep 17: 1711-1718. PubMed ID: 27829142

He, Q., et al. (2003). FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J. 22: 4421-4430. 12941694

He, Q., et al. (2006). CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev. 20(18): 2552-65. Medline abstract: 16980584

Hege, D. M., et al. (1997). Rhythmic expression of a PER-reporter in the Malpighian tubules of decapitated Drosophila: evidence for a brain-independent circadian clock. J. Biol. Rhythms 12(4): 300-8. PubMed Citation: 9438878

Heintzen, C., Loros, J. J. and Dunlap, J. C. (2001). The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104: 453-464. 11239402

Helfrich-Förster, C. (1995). The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. 92: 612-616. PubMed Citation: 7831339

Helfrich-Forster, C. (1997). Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J. Comp. Neurol. 380 (3): 335-354. PubMed Citation: 9087517

Hogenesch, J.B., Gu, Y.-Z., Jain, S., and Bradfield, C.A. (1998). The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. 95: 5474-5479. PubMed Citation: 9576906

Horikawa, K., et al. (2000). Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci. 20(15): 5867-5873. 10908630

Huang, Z.J., Edery, I. and Rosbash, M. (1993). PAS is a dimerization domain common to Drosophila Period and several transcription factors. Nature 364: 259-262. 8391649

Jakubcakova, V., et al. (2007). Light entrainment of the mammalian circadian clock by a PRKCA-dependent posttranslational mechanism. Neuron 54(5): 831-43. Medline abstract: 17553429

Jaumouille, E., Machado Almeida, P., Stahli, P., Koch, R. and Nagoshi, E. (2015). Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock. Curr Biol 25: 1502-1508. PubMed ID: 26004759

Jeon, M., et al. (1999). Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286(5442): 1141-6. PubMed Citation: 10550049

Jeong, E. M., Kwon, M., Cho, E., Lee, S. H., Kim, H., Kim, E. Y. and Kim, J. K. (2022). Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons. Proc Natl Acad Sci U S A 119(8). PubMed ID: 35193959

Jin, X., et al. (1999). A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96: 57-68. PubMed Citation: 9989497

Kadener, S., Stoleru, D., McDonald, M., Nawathean, P. and Rosbash. M. (2007). Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Genes Dev. 21(13): 1675-86. Medline abstract: 17578907

Kaneko, M., Helfrich-Forster, C. and Hall, J. C. (1997). Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 17(17): 6745-6760. PubMed Citation: 9254686

Kang, S. W., Lee, E., Cho, E., Seo, J. H., Ko, H. W. and Kim, E. Y. (2015). Drosophila peptidyl-prolyl isomerase Pin1 modulates circadian rhythms via regulating levels of PERIOD. Biochem Biophys Res Commun 463(3):235-40. PubMed ID: 25998391

Karpowicz, P., Zhang, Y., Hogenesch, J. B., Emery, P. and Perrimon, N. (2013). The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 3: 996-1004. PubMed ID: 23583176

Kategaya, L. S., Hilliard, A., Zhang, L., Asara, J. M., Ptacek, L. J. and Fu, Y. H. (2012). Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. PLoS One 7: e31987. PubMed ID: 22384121

Kim, E. Y., et al. (2012). A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26(5): 490-502. PubMed Citation: 22327476

Kim, W. J., Jan, L. Y. and Jan, Y. N. (2012). Contribution of visual and circadian neural circuits to memory for prolonged mating induced by rivals. Nat Neurosci 15: 876-883. Pubmed: 22561453

King, D. P., et al. (1997a). The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics 146(3): 1049-1060. PubMed Citation: 9215907

King, D. P., et al. (1997b). Positional cloning of the mouse circadian clock gene. Cell 89: 641-653. PubMed Citation: 9160755

Kivimae, S., Saez, L. and Young, M. W. (2008). Activating PER repressor through a DBT-directed phosphorylation switch. PLoS Biol. 6: e183. PubMed Citation: 18666831

Kloss B., et al. (1998). The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 1998 94(1): 97-107. PubMed Citation: 9674431

Kloss, B., et al. (2001). Phosphorylation of PERIOD is influenced by cycling physical associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila clock. Neuron 30: 699-706. 11430804

Knöll, B., et al. (2006). Serum response factor controls neuronal circuit assembly in the hippocampus. Nat. Neurosci. 9(2): 195-204. PubMed Citation: 16415869

Knopka, and Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. 68: 2112-2116. 5002428

Ko, H. W., Jiang, J. and Edery, I. (2002). Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420: 673-678. 12442174

Kohsaka, H., Takasu, E., Morimoto, T. and Nose, A. (2014). A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae. Curr Biol 24: 2632-2642. PubMed ID: 25438948

Krishnan, B., Dryer, S. E. and Hardin, P. E. (1999). Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400: 375-378. PubMed Citation: 10432117

Krishnan, P., Chatterjee, A., Tanoue, S. and Hardin, P. E. (2008). Spike amplitude of single-unit responses in antennal sensillae is controlled by the Drosophila circadian clock. Curr. Biol. 18(11): 803-7. PubMed Citation: 18499459

Krupp, J. J., et al. (2010). Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18(18): 1373-83. PubMed Citation: 18789691

Kumar, S., Chen, D., Jang, C., Nall, A., Zheng, X. and Sehgal, A. (2014). An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila. Nat Commun 5: 5697. PubMed ID: 25511299

Kwak, E., Kim, T. D. and Kim, K. T. (2006). Essential role of 3'-untranslated region-mediated mRNA decay in circadian oscillations of mouse Period3 mRNA. J. Biol. Chem. 281(28): 19100-6. 16684777

Lamaze, A., et al. (2011). The E3 ubiquitin ligase CTRIP controls CLOCK levels and PERIOD oscillations in Drosophila. EMBO Rep. 12(6): 549-57. PubMed Citation: 21525955

Lear, B. C., et al. (2005). The ion channel Narrow abdomen is critical for neural output of the Drosophila circadian pacemaker. Neuron 48: 965-976. 16364900

Lee, C., et al. (1996). Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science 271: 1740-1744. PubMed Citation: 8596938

Lee, C., Bae, K. and Edery, I. (1998). The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-Tim complex. Neuron 21(4): 857-67. PubMed Citation: 8596938

Lee, C., et al. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855-867. 11779462

Lee, J. E. and Edery, I. (2008). Circadian regulation in the ability of Drosophila to combat pathogenic infections. Curr. Biol. 18(3): 195-9. PubMed Citation: 18261909

Lee, S. J., Xu, H., and Montell, C. (2004). Rhodopsin kinase activity modulates the amplitude of the visual response in Drosophila. Proc. Natl. Acad. Sci. 101: 11874-11879. PubMed Citation: 15289614

Levine, J. D., et al. (1994). Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophila learning mutant dunce. Neuron 13: 967-74. PubMed Citation: 7946340

Lewis, M. T., Morgan, L. W. and Feldman, J. F. (1997). Analysis of frequency (frq) clock gene homologs: evidence for a helix-turn-helix transcription factor. Mol. Gen. Genet. 253: 401-414. PubMed Citation: 9037100

Li, Y., Guo, F., Shen, J., Rosbash, M. (2014). PDF and cAMP enhance Per stability in Drosophila clock neurons. Proc Natl Acad Sci U S A 111: E1284-1290. PubMed ID: 24707054

Liao, J., Seggio, J. A. and Ahmad, S. T. (2016). Mutations in the circadian gene period alter behavioral and biochemical responses to ethanol in Drosophila. Behav Brain Res 302: 213-219. PubMed ID: 26802726

Lim, C., Chung, B. Y., Pitman, J. L., McGill, J. J., Pradhan, S., Lee, J., Keegan, K. P., Choe, J. and Allada, R. (2007). Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr. Biol. 17(12): 1082-9. Medline abstract: 17555964

Lim, C., et al. (2011). The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature 470(7334): 399-403. PubMed Citation: 21331043

Lin, J.-M., Schroeder, A. and Allada, R. (2005). In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD. J. Neurosci. 25(48): 11175-83. 16319317

Lin, Y, Stormo, G. D. and Taghert, P. H. (2004). The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 24: 7951-7957. 15356209

Liu, Y., et al. (1997). Thermally Regulated Translational Tontrol of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell 89: 477-486. PubMed Citation: 9150147

Long, D. M., Blake, M. R., Dutta, S., Holbrook, S. D., Kotwica-Rolinska, J., Kretzschmar, D. and Giebultowicz, J. M. (2014). Relationships between the circadian system and Alzheimer's disease-Like symptoms in Drosophila. PLoS One 9: e106068. PubMed ID: 25171136

Long, D. M. and Giebultowicz, J. M. (2017). Age-related changes in the expression of the circadian clock protein PERIOD in Drosophila glial cells. Front Physiol 8: 1131. PubMed ID: 29375400

Loop, S., Katzer, M. and Pieler, T. (2005). mPER1-mediated nuclear export of mCRY1/2 is an important element in establishing circadian rhythm. EMBO Rep. 6(4): 341-7. 15791269

Low, K. H., Chen, W. F., Yildirim, E. and Edery, I. (2012). Natural variation in the Drosophila melanogaster clock gene period modulates splicing of its 3'-terminal intron and mid-day siesta. PLoS One 7: e49536. PubMed ID: 23152918

Luo, C., Loros, J. J. and Dunlap, J. C. (1998). Nuclear localization is required for function of the essential clock protein FRQ. Embo J. 17(5): 1228-1235. PubMed Citation: 9482720

Majercak, J., Kalderon, D. and Edery, I. (1997). Drosophila melanogaster deficient in protein kinase A manifests behavior-specific arrhythmia but normal clock function. Mol. Cell. Biol. 17(10): 5915-5922. PubMed Citation: 9315649

Majercak, J., Chen, W. F. and Edery, I. (2004). Splicing of the period gene 3'-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol. Cell. Biol. 24: 3359-3372. 15060157

Martinek, S. and Young, M. W. (2000). Specific genetic interference with behavioral rhythms in Drosophila by expression of inverted repeats. Genetics 156: 1717-1725. 11102368

Marrus, S. B., Zeng, H. and Rosbash, M. (1996). Effect of constant light and circadian entrainment of perS flies: evidence for light-mediated delay of the negative feedback loop in Drosophila. EMBO J. 15: 6877-6886. 9003764

Matsumoto, A., et al. (2007). A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev. 21(13): 1687-700. Medline abstract: 17578908

Maywood, E. S., et al. (1999). Rapid down-regulation of mammalian Period genes during behavioral resetting of the circadian clock. Proc. Natl. Acad. Sci. 96: 15211-15216. PubMed Citation: 10611364.

McDonald, M. J. and Rosbash, M. (2001). Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107: 567-578. 11733057

McGuire, J., et al. (1995). The basic helix-loop-helix/PAS factor Sim is associated with hsp90. Implications for regulation by interaction with partner factors. J. Biol. Chem. 270: 31353-31357. PubMed Citation: 8537407

McNeil, G. P., et al. (1998). A molecular rhythm mediating circadian clock output in Drosophila. Neuron 20(2): 297-303. PubMed Citation: 9491990

Medina, I., Casal, J. and Fabre, C.C. (2015). Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship? Biol Open 4(11):1549-57. PubMed ID: 26519517

Meinertzhagen, L. A. and Pyza, E. (1996). Daily rhythms in the fly's optic lobe: taking time out from the circadian clock. Trends Neurosci. 19: 285-291. PubMed Citation: 8799974

Meissner, R.-A. et al. (2008). TIMELESS is an important mediator of CK2 effects on circadian clock function in vivo. J. Neurosci. 28(39): 9732-9740. PubMed Citation: 18815259

Menet, J. S., et al. (2010). Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev. 24(4): 358-67. PubMed Citation: 20159956

Meng, Q. J., et al. (2008). Setting clock speed in mammals: The CK1{varepsilon}{tau} mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58: 78-88. PubMed Citation: 18400165

Meyer, P., Saez, L. and Young, M. W. (2006). PER-TIM interactions in living Drosophila cells: An interval timer for the circadian clock. Science 311: 226-229. 16410523

Miyasako, Y., Umezaki, Y. and Tomioka, K. (2007). Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 22: 115-126. PubMed Citation: 17440213

Molnar, C., et al. (2007). The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc. Natl. Acad. Sci. 104(19): 7963-8. PubMed Citation: 17483466

Murad, A., Emery-Le, M. and Emery, P. (2007). A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 53(5): 689-701. Medline abstract: 17329209

Myers, E. M., Yu, J. and Sehgal, A. (2003). Circadian control of eclosion: Interaction between a central and peripheral clock in Drosophila melanogaster. Curr. Biol. 13: 526-533. 12646138

Nakajima, Y., et al. (2004). Bidirectional role of orphan nuclear receptor RORalpha in clock gene transcriptions demonstrated by a novel reporter assay system. FEBS Lett. 565(1-3): 122-6. 15135064

Naruse, Y., et al. (2004). Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24(14): 6278-87. 15226430

Nawathean, P., Stoleru, D. and Rosbash, M. (2007). A small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization, and transcriptional repressor activity. Mol. Cell. Biol. 27(13): 5002-13. PubMed citation: 17452453

Nitabach, M. N., Blau, J. and Holmes, T. C. (2002). Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109: 485-495. 12086605

Numano, R., et al. (2006). Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms. Proc. Natl. Acad. Sci. 103(10): 3716-21. 16537451

Oda-Ishii, I., Bertrand, V., Matsuo, I., Lemaire, P. and Saiga, H. (2005). Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 132(7): 1663-74. 15743880

Oishi, K., Shiota, M., Sakamoto, K., Kasamatsu, M. and Ishida, N. (2004). Feeding is not a more potent Zeitgeber than the light-dark cycle in Drosophila. Neuroreport 15(4): 739-43. 15094488

Okamura, H., et al. (1999). Photic induction of mPer1 and mPer2 in Cry-deficient mice lacking a biological clock. Science 286: 2531-2534.

Oster, H., et al. (2002). Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Genes Dev. 16: 2633-2638. 11048929

Oster, H., et al. (2003a). cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr. Biol. 13: 725-733. 12725729

Oster, H., et al. (2003b). Loss of circadian rhythmicity in aging mPer1-/- mCry2-/- mutant mice. Genes Dev. 17: 1366-1379. 12782655

Paquet, E. R., Rey, G. and Naef, F. (2008). Modeling an evolutionary conserved circadian cis-element. PLoS Comput. Biol. 4(2): e38. PubMed Citation: 18282089

Park, J. H., et al. (2000). Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. 97: 3608-3613. PubMed Citation: 10725392.

Parisky, K.M., Agosto Rivera, J.L., Donelson, N.C., Kotecha, S. and Griffith, L.C. (2016). Reorganization of sleep by temperature in Drosophila requires light, the homeostat, and the circadian clock. Curr Biol 26(7):882-92. PubMed ID: 26972320

Partch, C. L., et al. (2006). Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc. Natl. Acad. Sci. 103(27): 10467-72. 16790549

Pegoraro, M., Gesto, J. S., Kyriacou, C. P. and Tauber, E. (2014). Role for circadian clock genes in seasonal timing: testing the bunning hypothesis. PLoS Genet 10: e1004603. PubMed ID: 25188283

Peixoto, A. A., et al. (1998). Molecular coevolution within a Drosophila clock gene. Proc. Natl. Acad. Sci. 95(8): 4475-4480. PubMed Citation: 9539762

Peppel, K., Boekhoff, I., McDonald, P., Breer, H., Caron, M. G., and Lefkowitz, R. J. (1997). G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J. Biol. Chem. 272: 25425-25428. PubMed Citation: 9325250

Philpott, J. M., Narasimamurthy, R., Ricci, C. G., Freeberg, A. M., Hunt, S. R., Yee, L. E., Pelofsky, R. S., Tripathi, S., Virshup, D. M. and Partch, C. L. (2020). Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. Elife 9. PubMed ID: 32043967

Piccin, A., et al. (2000). The Clock Gene period of the housefly, Musca domestica, rescues behavioral rhythmicity in Drosophila melanogaster: evidence for intermolecular coevolution? Genetics 154: 747-758. PubMed Citation: 10655226.

Picot, M., et al. (2009). A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain. J. Neurosci. 29(26): 8312-20. PubMed Citation: 19571122

Pilorz, V., Cunningham, P. S., Jackson, A., West, A. C., Wager, T. T., Loudon, A. S. and Bechtold, D. A. (2014). A novel mechanism controlling resetting speed of the circadian clock to environmental stimuli. Curr Biol 24: 766-773. PubMed ID: 24656826

Pittendrigh, C. S., Bruce, V. and Kaus, P. (1958). On the significance of transients in daily rhythms. Proc. Natl. Acad. Sci. 44: 965-973. PubMed citation: 16590298

Plautz, J. D., et al. (1997a). Independent photoreceptive circadian clocks throughout Drosophila. Science 278(5343): 1632-1635. PubMed Citation: 9374465

Plautz, J. D., et al. (1997b). Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12(3): 204-17. PubMed Citation: 9181432

Preuss, F., et al. (2004). Drosophila doubletime mutations which either shorten or lengthen the period of circadian rhythms decrease the protein kinase activity of casein kinase I. Mol. Cell. Biol. 24: 886-898. PubMed Citation: 14701759

Preussner, M., Wilhelmi, I., Schultz, A. S., Finkernagel, F., Michel, M., Moroy, T. and Heyd, F. (2014). Rhythmic U2af26 Alternative Splicing Controls PERIOD1 Stability and the Circadian Clock in Mice. Mol Cell 54: 651-662. PubMed ID: 24837677

Price, J.L., Dembinska, M.E., Young, M.W. and Rosbash, M. (1995). Suppression of period protein abundance and circadian cycling by the Drosophila clock mutation timeless. EMBO J. 14: 4044-4049. PubMed Citation: 7664743

Price, J. L., et al. (1998). double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94(1): 83-95. PubMed Citation: 9674430

Qui, J. and Hardin, P. E. (1996). per mRMA cycling is locked to lights-off under photoperiodic conditions that support circadian feedback loop function. Mol. Cell Biol. 16: 4182-88. PubMed Citation: 8754817

Ramanan, N., et al. (2005). SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8(6): 759-67. PubMed Citation: 15880109

Reppert, S.M. and Sauman, I. (1995). period and timeless tango: a dance of two clock genes. Neuron 15: 983-986. PubMed Citation: 7576665

Rosato, E., et al. (2001). Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr. Bio. 11: 909-917. 11448767

Rothenfluh, A., Young, M. W. and Saez, L. (2000b). A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. Neuron 26: 505-514. PubMed Citation: 10839368.

Rothenfluh, A., Abodeely, M. and Young, M. W. (2000b). Short-period mutations of per affect a double-time-dependent step in the Drosophila circadian clock. Curr. Biol. 10: 1399-1402. 11084344

Rouyer, F., et al. (1997). A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock. EMBO J. 16(13): 3944-3954. PubMed Citation: 9233804

Rosato, E., et al. (1996). Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster. J. Mol. Evol. 42: 392-408. PubMed Citation: 8642608

Ruan, G. X., et al. (2006). Circadian organization of the mammalian retina. Proc. Natl. Acad. Sci. 103(25): 9703-8. 16766660

Ruiz, S., Rickert, C., Berger, C., Technau, G. M. and Cantera, R. (2011). Spatio-temporal pattern of cells expressing the clock genes period and timeless and the lineages of period expressing neurons in the embryonic CNS of Drosophila melanogaster. Gene Expr. Patterns 10(6): 274-82. PubMed Citation: 20558325

Rutila, J. E., et al. (1996). The timSL Mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. Neuron 17, 921-929. 8938124

Rutila, J. E., et al. (1998). CYCLE is a second bHLH-PAS Clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93: 805-814. PubMed Citation: 9630224

Saez, I., and Young, M.W. (1988). in situ localization of the per clock protein during development of Drosophila melanogaster. Mol. Cell Biol. 8: 5378-85. PubMed Citation: 2468997

Saez, L. and Young, M. W. (1996). Regulated nuclear localization of the Drosophila clock proteins Period and Timeless. Neuron 17: 911-920. 8938123

Sakai, T. and Ishida, N. (2001). Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc. Natl. Acad. Sci. 98: 9221-9225. 11470898

Sangoram, A. M., et al. (1998). Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21(5): 1101-13. PubMed Citation: 9856465

Sarov-Blat, L., So, W. V., Liu, L. and Rosbash, M. (2000). The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101: 647-656. 10892651

Sauman, I. and Reppert, S. M. (1996a). Circadian Clock Neurons in the Silkmoth Antheraea pernyi: Novel Mechanisms of Period Protein Regulation. Neuron 17: 889-900. PubMed Citation: 8938121

Sauman, I., et al. (1996b). Period Protein Is Necessary for Circadian Control of Egg Hatching Behavior in the Silkmoth Antheraea pernyi. Neuron 17: 901-909. PubMed Citation: 8938122

Sawyer, L. A., et al. (1997). Natural variation in a Drosophila clock gene and temperature compensation. Science 278(5346): 2117-2120. PubMed Citation: 9405346

Sawyer, L. A., et al. (2006). The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: implications for selection. Genetics 174(1): 465-80. 16849607

Schlichting, M., Diaz, M. M., Xin, J. and Rosbash, M. (2019). Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. Elife 8: e48301. PubMed ID: 31613223

Schmalen, I., Reischl, S., Wallach, T., Klemz, R., Grudziecki, A., Prabu, J. R., Benda, C., Kramer, A. and Wolf, E. (2014). Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157: 1203-1215. PubMed ID: 24855952

Schmutz, I.., Ripperger, J. A., Baeriswyl-Aebischer, S. and Albrecht, U. (2010). The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24(4): 345-57. PubMed Citation: 20159955

Schneider, L. E. and Spradling, A. C. (1997). The Drosophila G-protein-coupled receptor kinase homologue Gprk2 is required for egg morphogenesis. Development 124(13): 2591-602. PubMed Citation: 9217001

Sekine, T., et al. (2008). Casein kinase I epsilon does not rescue double-time function in Drosophila despite evolutionarily conserved roles in the circadian clock. J. Biol. Rhythms 23: 3-15. PubMed Citation: 18258753

Seluzicki, A., Flourakis, M., Kula-Eversole, E., Zhang, L., Kilman, V. and Allada, R. (2014). Dual PDF Signaling Pathways Reset Clocks Via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior. PLoS Biol 12: e1001810. PubMed ID: 24643294

Shafer, O. T., Rosbash, M. and Truman, J. W. (2002). Sequential nuclear accumulation of the clock proteins Period and Timeless in the pacemaker neurons of Drosophila melanogaster. J. Neurosci. 22(14): 5946-5954. 12122057

Shafer, O. T., Levine, J. D., Truman, J. W. and Hall, J. C. (2004). Flies by night: Effects of changing day length on Drosophila's circadian clock. Curr. Biol. 14: 424-432. 15028219

Shaw, P. J., Tononi, G., Greenspan, R. J. and Robinson, D. F. (2002). Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417: 287-291. 12015603

Shearman, L. P., et al. (1997). Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19(6): 1261-1269. PubMed Citation: 9427249

Shearman, L. P., et al. (2000). Interacting molecular loops in the mammalian circadian clock. Science 288(5468): 1013-9. PubMed Citation: 10807566.

Sheeba, V., Sharma, V. K., Gu, H., Chou, Y. T., O'Dowd, D. K. and Holmes, T. C. (2008). Pigment dispersing factor-dependent and -independent circadian locomotor behavioral rhythms. J. Neurosci. 28(1): 217-27. PubMed Citation: 18171939

Shigeyoshi, Y., et al. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91(7): 1043-1053. PubMed Citation: 9428526

Sidote, D., et al. (1998). Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM. Mol. Cell. Biol. 18(4): 2004-2013. PubMed Citation: 9528772

Siwicki, K.K., et al. (1988). Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1: 141-150. PubMed Citation: 3152288

Smelkinson, M. G., Zhou, Q. and Kalderon. D. (2007). Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation. Dev. Cell 13(4): 481-95. PubMed Citation: 17925225

So, W. V. and Rosbash, M. (1997). Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J. 16(23): 7146-7155. 9384591

So, W. V., et al. (2000). takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol. and Cell. Biol. 20: 6935-6944. 10958689

Stanewsky, R., et al. (1997a). Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 16(16): 5006-5018. PubMed Citation: 9305642

Stanewsky, R., et al. (1997b). Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: mapping elements of the PER protein involved in circadian cycling. J. Neurosci. 17(2): 676-96. PubMed Citation:

Stanewsky, R., et al. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95(5): 681-92. PubMed Citation: 9845370

Stanewsky, R., Lynch, K. S., Brandes, C. and Hall, J. C. (2002). Mapping of elements involved in regulating normal temporal period and timeless RNA expression patterns in Drosophila melanogaster. J. Biol. Rhythms 17(4): 293-306. 12164246

Steenhard, B. M. and Besharse, J. C. (2000). Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J. Neurosci. 20(23): 8572-8577. 11102460

Stern, D. L. (2014). Reported Drosophila courtship song rhythms are artifacts of data analysis. BMC Biol 12: 38. PubMed ID: 24965095

Sun, W. C., et al. (2010). Two distinct modes of PERIOD recruitment onto dCLOCK reveal a novel role for TIMELESS in circadian transcription. J. Neurosci. 30(43): 14458-69. PubMed Citation: 20980603

Sun, Z. S., et al. (1997). RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90(6): 1003-1011. PubMed Citation: 9323128

Suri, V., Lanjuin, A. and Rosbash, M. (1999). TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock. EMBO J. 18(3): 675-686. PubMed Citation: 9927427

Suri, V., Hall, J. C. and Rosbash, M. (2000). Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila, J. Neurosci. 20(20): 7547-7555. PubMed Citation: 11027213.

Syed, S., Saez, L. and Young, M. W. (2011). Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J. Biol. Chem. 286(31): 27654-62. PubMed Citation: 21659538

Takumi, T., et al. (1998). A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17(16): 4753-4759. PubMed Citation: 9707434

Tanoue, S., Krishnan, P., Krishnan, B., Dryer, S. E. and Hardin, P. E. (2004). Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr. Biol. 14: 638-649. PubMed Citation: 15084278

Tanoue, S., Krishnan, P., Chatterjee, A. and Hardin, P. E. (2008). G protein-coupled receptor kinase 2 is required for rhythmic olfactory responses in Drosophila. Curr. Biol. 18(11): 787-94. PubMed Citation: 18499458

Tauber, E., et al. (2003). Temporal mating isolation driven by a behavioral gene in Drosophila. Curr. Biol. 13: 140-145. 12546788

Tei, H., et al. (1997). Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389(6650): 512-516. PubMed Citation:

Tischkau, S. A., et al. (2003). Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J. Neurosci. 23(20): 7543-50. 12930792

Toma, D. P., et al. (2000). Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc. Natl. Acad. Sci. 97: 6914-6919. PubMed Citation: 10841583

Vaccaro, A., Birman, S. and Klarsfeld, A. (2016). Chronic jet lag impairs startle-induced locomotion in Drosophila. Exp Gerontol 85: 24-27. PubMed ID: 27639775

Van Gelder, R. N. and Krasnow, M. A. (1996). A novel circadianly expressed Drosophila melanogaster gene dependent of the period gene for its rhythmic expression. EMBO J. 15: 1625-31. PubMed Citation: 8612586

Vansteense, M. J., et al. (2003). Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Curr. Biol. 13: 1538-1542. 12956957

Van Wynsberghe, P. M., Finnegan, E. F., Stark, T., Angelus, E. P., Homan, K. E., Yeo, G. W. and Pasquinelli, A. E. (2014). The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans. Dev Biol 390: 126-135. PubMed ID: 24699545

Veleri, S., et al. (2003). A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr. Biol. 13: 1758-1767. 14561400

Vielhaber, E., et al. (2000). Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase Iepsilon. Mol. Cell. Biol. 20: 4888-4899. PubMed Citation: 10848614.

Viola, A. U., et al. (2007). PER3 polymorphism predicts sleep structure and waking performance. Curr. Biol. 17(7): 613-8. Medline abstract: 17346965

Vitaterna, M. H., et al. (1999). Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. 96(21): 12114-9. PubMed Citation: 10518585

Vosshall, L.B., Sehgal, A., Saez, L. and Young, M.W. (1994). Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263: 1606-1609. PubMed Citation: 8128247

Vrailas-Mortimer, A. D., Ryan, S. M., Avey, M. J., Mortimer, N. T., Dowse, H. and Sanyal, S. (2014). p38 MAP Kinase regulates circadian rhythms in Drosophila. J Biol Rhythms [Epub ahead of print]. PubMed ID: 25403440

Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T. and Osada, H. (2004). M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proc. Natl. Acad. Sci. 101: 4419-4424. PubMed Citation: 15070733

Wei, Z., Angerer, R. C. and Angerer, L. M. (1999). Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter. Mol. Cell. Biol. 19(2): 1271-8. PubMed Citation: 9891061

Wu, G., Xu, G., Schulman, B. A., Jeffrey, P. D., Harper, J. W. and Pavletich, N. P. (2003). Structure of a β-TrCP1-Skp1-β-catenin complex: Destruction motif binding and lysine specificity of the SCF(?-TrCP1) ubiquitin ligase. Mol. Cell 11: 1445-1456. PubMed Citation: 12820959

Wulbeck, C., Szabo, G., Shafer, O. T., Helfrich-Forster, C. and Stanewsky, R. (2005). The novel Drosophila timblind mutation affects behavioral rhythms but not periodic eclosion. Genetics 169(2): 751-66. 15520259

Xu, Y., et al. (2005). Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640-644. PubMed Citation: 15800623

Yagita, K., et al. (2000). Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 14: 1353-1363. PubMed Citation: 10837028

Yagita, K., et al. (2002). Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21: 1301-1314. 11889036

Yamaguchi, S., et al. (2000a). Role of DBP in the circadian oscillatory mechanism. Mol. Cell. Biol. 20: 4773-81. PubMed Citation: 10848603.

Yamaguchi, S., et al. (2000b). The 5' upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr. Biol. 10: 873-876. PubMed Citation: 10899004

Yu, W., Zheng, H., Houl, J. H., Dauwalder, B. and Hardin. P. E. (2006). PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev. 20(6): 723-33. 16543224

Yu, W., Houl, J. H. and Hardin, P. E. (2011). NEMO kinase contributes to core period determination by slowing the pace of the Drosophila circadian oscillator. Curr. Biol. 21(9): 756-61. PubMed Citation: 21514156

Zehring, W. A., Wheeler, D. A., Reddy, P., Konopka, R. J., Kyriacou, C. P., Rosbash, M., and Hall, J. C. (1984). P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39: 369-376. 6094014

Zhang, Z., Cao, W. and Edery, I. (2018). The SR protein B52/SRp55 regulates splicing of the period thermosensitive intron and mid-day siesta in Drosophila. Sci Rep 8(1): 1872. PubMed ID: 29382842

Zheng, B., et al. (1999). The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400(6740): 169-73. PubMed Citation: 10408444

Zheng, B., et al. (2001). Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105: 683-694. 11389837

Zheng, X., Sowcik, M., Chen, D. and Sehgal, A. (2014). Casein kinase 1 promotes synchrony of the circadian clock network. Mol Cell Biol [Epub ahead of print]. PubMed ID: 24820422

Zhou, J., Yu, W. and Hardin, P. E. (2016). CLOCKWORK ORANGE enhances PERIOD mediated rhythms in transcriptional repression by antagonizing E-box binding by CLOCK-CYCLE. PLoS Genet 12: e1006430. PubMed ID: 27814361

Zhou, X., Yuan, C. and Guo, A. (2005). Drosophila olfactory response rhythms require clock genes but not pigment dispersing factor or lateral neurons. J. Biol. Rhythms 20: 237-244. PubMed Citation: 15851530

Zylka, M. J., et al. (1998a). Three period homologs in mammals: Differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20: 1103-1110. PubMed Citation: 9655499

Zylka, M. J., et al. (1998b). Molecular analysis of mammalian Timeless. Neuron 21(5): 1115-22. PubMed Citation: 9856466

period: Biological Overview | Evolutionary Homologs | Regulation | Targets of Activity and Post-transcriptional Regulation | Protein Interactions | Developmental Biology | Effects of Mutation

date revised: 11 May 2022

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.