zerknüllt


DEVELOPMENTAL BIOLOGY

Embryonic

zen transcripts are distributed along the dorsal surface of precellular embryos, including the anterior and posterior poles. In cross section, transcripts encompass 40% of the circumference. By onset of gastrulation [Images], expression is lost from the poles, and is restriced to 10% of the circumference. Transcripts are detected in portions of the dorsal ectoderm that are anterior to the presumptive ectoderm and might correspond to the future optic lobe. Transcripts are detected in a subset of pole cells within the posterior midgut. There are interesting subtle differences between localization of Z1 and Z2 transcripts (Rushlow, 1987).

Effects of Mutation or Deletion

Advanced stage zen mutants show a twisting along the germ band and a failure of head involution. The phenotype can be explained on the basis of a transformation in cell fate of the dorsal most ectoderm toward a more ventral pathway of differentiation (Rushlow, 1987). In zen mutants, the cephalic furrow [Images] arises from a more dorsal region. Furthermore, the anterior and posterior transverse furrows (dorsal folds) are virtually absent. There is a failure of posterior midgut invagination to extend anteriorly along the dorsal surface. The amnioserosa is absent (Rushlow, 1990).

A genetic network conferring canalization to a bistable patterning system in Drosophila

To achieve the 'constancy of the wild-type,' the developing organism must be buffered against stochastic fluctuations and environmental perturbations. This phenotypic buffering has been theorized to arise from a variety of genetic mechanisms and is widely thought to be adaptive and essential for viability. In the Drosophila blastoderm embryo, staining with antibodies against the active, phosphorylated form of the bone morphogenetic protein (BMP) signal transducer Mad, pMad, or visualization of the spatial pattern of BMP-receptor interactions reveals a spatially bistable pattern of BMP signaling centered on the dorsal midline. This signaling event is essential for the specification of dorsal cell fates, including the extraembryonic amnioserosa. BMP signaling is initiated by facilitated extracellular diffusion that localizes BMP ligands dorsally. BMP signaling then activates an intracellular positive feedback circuit that promotes future BMP-receptor interactions. This study identified a genetic network comprising three genes that canalizes this BMP signaling event. The BMP target eiger (egr) acts in the positive feedback circuit to promote signaling, while the BMP binding protein encoded by crossveinless-2 (cv-2) antagonizes signaling. Expression of both genes requires the early activity of the homeobox gene zerknullt (zen). Two Drosophila species lacking early zen expression have high variability in BMP signaling. These data both detail a new mechanism that generates developmental canalization and identify an example of a species with noncanalized axial patterning (Gavin-Smith, 2013).

This study has identified a genetic network that acts as a phenotypic stabilizer of a spatially bistable patterning process. The minimal bistable systems allowed by theory require a nonlinear activation rate and a linear degradation rate. It is believed that the identified network defined in this study represents the minimal genetic components required for bistability of BMP signaling in D. melanogaster. In turn, bistability canalizes dorsal patterning. During amnioserosa specification, egr provides positive feedback, conferring nonlinearity, while cv-2> acts as a linear negative regulator of the signaling pathway. The loss of both components reveals the inherent noise of facilitated extracellular diffusion of BMP ligands, as without egr and cv-2, embryos manifest a huge range of signaling domain breadth and intensity. The data also reveal that amnioserosa specification in D. melanogaster is robust on multiple levels, with different mechanisms ensuring robustness in various Drosophila species (Gavin-Smith, 2013).

First, egr or bsk RNAi embryos have normal amounts of amnioserosa and minimal embryonic lethality despite the 2-fold reduction in signaling intensity. This demonstrates that amnioserosa specification is robust to decreases of BMP signaling and the wild-type level of BMP signaling in D. melanogaster is much higher than necessary. Second, the D. melanogaster embryo can tolerate at least a 250% increase or a 20% decrease in amnioserosa cell number without compromising viability. Lastly, the variability in amnioserosa cell number in D. yakuba embryos is equivalent to that in D. melanogaster embryos, indicating that amnioserosa specification in D. yakuba is robust against variable BMP signaling intensity. Therefore, in D. yakuba embryos, either less BMP signaling is required to direct amnioserosa specification or a second mechanism downstream of BMP signaling intensity maintains robust amnioserosa specification (Gavin-Smith, 2013).

Finally, as a counterpoint to the predicted ubiquity and selective maintenance of developmental canalization, D. santomea has been identified as a noncanalized wildtype species. D. santomea both has highly variable cell fate specification and is not robust to genetic variants found in its wild population. The identification of this noncanalized species may permit further investigation of the evolutionary factors allowing for this diversity in developmental trajectories (Gavin-Smith, 2013).


REFERENCES

Ansari, S., Troelenberg, N., Dao, V. A., Richter, T., Bucher, G. and Klingler, M. (2018). Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 115(8): 1819-1824. PubMed ID: 29432152

Brickman, J. M., Adam, M. and Ptashne, M. (1999). Interactions between an HMG-1 protein and members of the Rel family. Proc. Natl. Acad. Sci. 96: 10679-10683. PubMed Citation: 10485885

Brooke, N. M., Garcia-Fernandez, J. and Holland, P. W. (1998). The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392(6679): 920-922. PubMed Citation: 9582071

Cai, H. and Levine, M. (1995). Modulation of enhancer-promoter insulators in the Drosophila embryo. Nature 376: 533-536. PubMed Citation: 7637789

Cai, H. N., Arnosti, D. N. and Levine, M. (1996). Long-range repression in the Drosophila embryo. Proc. Natl. Acad. Sci. 93: 9309-14. PubMed Citation: 8790326

Chang, T., et al. (2001). Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128: 4691-4704. 11731450

Chen, G., Handel, K. and Roth, S. (2000). The maternal NF-kappaB/Dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development 127: 5145-5156. PubMed Citation: 11060240

Chen, H. Z. and Zubay, G. (1989). Two nearby sites bind zen protein independently. Mol. Cell. Biochem. 90: 27-35. PubMed Citation: 2575209

Creuzet, S., et al. (2002). Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129: 4301-4313. 12183382

Damen, W. G. and Tautz, D. (1998). A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene-like fashion. Dev. Genes Evol. 208(10): 586-90. PubMed Citation: 9811977

Decotto, E. and Ferguson, E. L. (2001). A positive role for Short gastrulation in modulating BMP signaling during dorsoventral patterning in the Drosophila embryo. Development 128: 3831-3841. 11585808

Doyle, H. J. Kraut, R. and Levine, M. (1989). Spatial regulation of zerknüllt: a dorsal-ventral patterning gene in Drosophila. Genes Dev. 3: 1518-33

Dubnicoff, T., Valentine, S. A., Chen, G., Shi, T., Lengyel, J. A., Paroush, Z. and Courey, A. J. (1997). Conversion of Dorsal from an activator to a repressor by the global corepressor Groucho. Genes Dev. 11(22): 2952-2957

Falciani, F., et al. (1996). Class 3 Hox genes in insects and the origin of zen. Proc. Natl. Acad. Sci. 93: 8479-8484

Gaufo, G. O. Thomas, K. R. and Capecchi, M. R. (2003). Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 130: 5191-5201. 12954718

Gavin-Smyth, J., Wang, Y. C., Butler, I. and Ferguson, E. L. (2013). A genetic network conferring canalization to a bistable patterning system in Drosophila. Curr Biol 23: 2296-2302. PubMed ID: 24184102

Gould, A., et al. (1997). Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 11: 900-913

Grapin-Botton, A., Bonnin, M.-A. and Le Douarin, N. M. (1997). Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group. Development 124: 849-859

Guazzi, S., et al. (1998). Regulatory interactions between the human HOXB1, HOXB2, and HOXB3 proteins and the upstream sequence of the Otx2 gene in embryonal carcinoma cells. J. Biol. Chem. 273(18): 11092-9

Hirose, F., Yamaguchi, M. and Matsukage, A. (1994). Repression of regulatory factor for Drosophila DNA replication-related gene promoters by zerknüllt homeodomain protein. J. Biol. Chem. 269: 2937-42

Hirose, F., et al. (1996). Isolation and characterization of cDNA for DREF, a promoter-activating factor for Drosophila DNA replication-related genes. J. Biol. Chem. 271: 3930-3937

Huang, J. D., et al. (1993). The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 7: 694-704

Huang, J. D., et al. (1995). Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev. 9: 3177-3189

Hughes, C. L. and Kaufman, T. C. (2002). Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129: 1225-1238. 11874918

Jiang, J., et al (1992). Individual dorsal morphogen binding sites mediate activation and repression in the Drosophila embryo. EMBO J. 11: 3147-54

Jimenez, G., et al. (2000). Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 14(2): 224-31

Kameda, Y., et al. (2002). Homeobox gene Hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev. Biol. 247: 197-209. 12074562

Kirov, N., et al. (1993). Conversion of a silencer into an enhancer: evidence for a co-repressor in dorsal-mediated repression in Drosophila. EMBO J. 12: 3193-9

Krosl, J., et al. (1998). Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves cooperation with PBX1. Oncogene 16(26): 3403-12

Kwan, C. T., et al. (2001). Regulatory analysis of the mouse Hoxb3 gene: multiple elements work in concert to direct temporal and spatial patterns of expression. Dev. Bio. 232: 176-190. 11254356

Lehming, N. (1994). An HMG-like protein that can switch a transcriptional activator to a repressor. Nature 371: 175-179

Manley, N. R. and Capecchi, M. R. (1997). Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 192(2): 274-288

Manley, N. R. and Capecchi, M. R. (1998a). Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 192(2): 274-88

Manley, N. R. and Capecchi, M. R. (1998b). Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev. Biol. 195(1): 1-15

Manley, N. R., Selleri, L., Brendolan, A., Gordon, J. and Cleary, M. L. (2004). Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs. Dev. Biol. 276(2): 301-12. 15581866

Manzanares, M., et al. (1997). Segmental regulation of Hoxb-3 by kreisler. Nature 387 (6629): 191-195

Manzanares, M., et al. (2002). Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J. 21: 365-376. 11823429

Markstein, M., et al. (2002). Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo Proc. Natl. Acad. Sci. 99: 763-768. 11752406

Mechta-Grigoriou, F., et al. (2003). c-jun regulation and function in the developing hindbrain. Dev. Biol. 258: 419-431. 12798298

Pan, D. and Courey, A. J. (1992). The same dorsal binding site mediates both activation and repression in a context-dependent manner. EMBO J. 11: 1837-42

Panfilio, K. A., Oberhofer, G. and Roth, S. (2013). High plasticity in epithelial morphogenesis during insect dorsal closure. Biol Open 2: 1108-1118. PubMed ID: 24244847

Podos, S. D., Hanson, K. K., Wang, Y.-C. and Ferguson, E. L. (2001). The Smurf1 ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Dev. Cell 1: 567-578. 11703946

Ray,R. P., et al. (1991). The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. Development 113: 35-54

Reim, I., Lee, H.-H. and Frasch, M. (2003). The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development 130: 3187-3204. 12783790

Rusch, J. and Levine, M. (1994). Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev. 8: 1247-1257

Rusch, J. and Levine, M. (1997). Regulation of a dpp target gene in the Drosophila embryo. Development 124: 303-311

Rushlow, C., Doyle, H., Hoey, T. and Levine, M. (1987). Molecular characterization of the zerknüllt region of the Antennapedia gene complex in Drosophila. Genes Dev. 1: 1268-79

Rushlow, C. and Levine, M. (1990). The role of zerknüllt gene in dorsal-ventral pattern formation in Drosophila. Adv. Genetics 27: 277-307

Rushlow, C., et al. (2001). Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev. 15: 340-351. 11159914

Ryu, J. R., et al. (1997). Transcriptional regulation of the Drosophila-raf proto-oncogene by the DNA replication-related element (DRE)/DRE-binding factor (DREF) system. Nucleic Acids Res. 25(4): 794-799

Saldivar, J. R., et al. (1996). Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa-3 in the avian embryo. Development 122(3): 895-904

Sauvageau, G., et al. (1998). Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 6(1): 13-22

Schilling, T. F., Prince, V. and Ingham, P. W. (2001). Plasticity in zebrafish hox expression in the hindbrain and cranial neural crest. Dev. Bio. 231: 201-216. 11180963

Shin, D. H. and Hong, J. W. (2014). Capicua is involved in Dorsal-mediated repression of zerknullt expression in Drosophila embryo. BMB Rep. PubMed ID: 25059278

Selleri, L., et al. (2004). The TALE homeodomain protein Pbx2 is not essential for development and long-term survival. Mol. Cell. Biol. 24(12): 5324-31. 15169896

Stauber, M., Jackle, H. and Schmidt-Ott, U. (1999). The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc. Natl. Acad. Sci. 96(7): 3786-9. PubMed ID: 10097115

Stauber, M., Prell, A. and Schmidt-Ott, U. (2002). A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies. Proc. Natl. Acad. Sci. 99: 274-279. 11773616

Su, D.-m., et al. (2001). Hoxa3 and Pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev. Bio 236: 316-29. 11476574

Tatei, K., Cai, H., Ip, T. and Levine, M. (1995). Race: a Drosophila homologue of the angiotensin converting enzyme. Mech. Dev. 51: 157-168

Telford, M. J. and Thomas, R. H. (1998). Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev. Genes Evol. 208(10): 591-4

Terol, J., Perez-Alonso, M. and de Frutos, R. (1995). Molecular characterization of the zerknüllt region of the Antennapedia complex of D. subobscura. Chromosoma 103: 613-624

Valentine, S. A., et al. (1998). Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol. Cell. Biol. 18(11): 6584-94

Wilson, M. J. and Dearden, P. K. (2011). Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 138(16): 3497-507. PubMed Citation: 21771808

Winick, J., et al. (1993). A GATA family transcription factor is expressed along the embryonic dorso-ventral axis in Drosophila melanogaster . Development 119: 1055-65

Xu, M., Kirov, N. and Rushlow, C. (2005). Peak levels of BMP in the Drosophila embryo control target genes by a feed-forward mechanism. Development 132: 1637-1647. 15728670

Yamaguchi, M., et al. (1991). Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknüllt protein. Mol Cell Biol. 11: 4909-17

Yau, T. O., et al. (2003). Auto/cross-regulation of Hoxb3 expression in posterior hindbrain and spinal cord. Dev. Bio. 252: 287-300. 12482716


zerknüllt: Biological Overview | Evolutionary Homologs | Regulation | Targets of Activity | Developmental Biology | Effects of Mutation

date revised: 12 April 2018 

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.