Adamson, A. L. and Shearn, A. (1996). Molecular genetic analysis of Drosophila ash2, a member of the trithorax group required for imaginal disc pattern formation. Genetics 144(2): 621-33. 8889525

Abbott, M. K. and Kaufman, T. C. (1986). The relationship between the functional complexity and the molecular organization of the Antennapedia locus of Drosophila melanogaster. Genetics 114: 919-42. PubMed Citation: 3098627

Aboobaker, A. A. and Blaxter, M. L. (2003). Hox gene loss during dynamic evolution of the nematode cluster. Curr. Biol. 13: 37-40. 12526742

Abzhanov, A. and Kaufman, T. C. (2000). Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development 127: 2239-2249. PubMed Citation: 10804167

Ahn, Y., Zou, J. and Mitchell, P. J. (2011). Segment-specific regulation of the Drosophila AP-2 gene during leg and antennal development. Dev. Biol. 355(2): 336-48. PubMed Citation: 21575621

Ahn, Y., Mullan, H. E. and Krumlauf, R. (2014). Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Dev Biol 388: 134-144. PubMed ID: 24525295

Aisemberg, G. O., et al. (1993). Antennapedia-class homebox genes define diverse neuronal sets in the embryonic CNS of the leech. J. Neurobiol 24: 1423-32. PubMed Citation: 7901325

Aisemberg, G. O. and Macagno, E. R. (1994). Lox1, an Antennapedia-class homeobox gene, is expressed during leech gangliogenesis in both transient and stable central neurons. Dev Biol 161: 455-65. PubMed Citation: 7906233

Altamirano-Torres, C., Salinas-Hernandez, J. E., Cardenas-Chavez, D. L., Rodriguez-Padilla, C. and Resendez-Perez, D. (2018). Transcription factor TFIIEbeta interacts with two exposed positions in helix 2 of the Antennapedia homeodomain to control homeotic function in Drosophila. PLoS One 13(10): e0205905. PubMed ID: 30321227

Ambros, V. and Horvitz, H. R. (1984). Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226: 409-416. PubMed Citation: 6494891

Appel, B. and Sakonju, S. (1993). Cell-type-specific mechanisms of transcriptional repression by the homeotic gene products UBX and ABD-A in Drosophila embryos. EMBO J 12: 1099-1109. PubMed Citation: 8096172

Azcoitia, V., Aracil, M., Martinez, A. C. and Torres, M. (2005). The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev. Biol. 280: 307-320. PubMed citation: 15882575

Baumgardt, M., Karlsson, D., Salmani, B. Y., Bivik, C., MacDonald, R. B., Gunnar, E., Thor, S. (2014) Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. Dev Cell 30: 192-208. PubMed ID: 25073156

Becker, H., Renner, S., Technau, G.M. and Berger, C. (2016). Cell-autonomous and non-cell-autonomous function of Hox genes specify segmental neuroblast identity in the gnathal region of the embryonic CNS in Drosophila. PLoS Genet 12: e1005961. PubMed ID: 27015425

Bermingham, J. R., et al. (1990). Different patterns of transcription from the two Antennapedia promoters during Drosophila embryogenesis. Development 109: 553-66. PubMed Citation: 1976090

Betizeau, M., Cortay, V., Patti, D., Pfister, S., Gautier, E., Bellemin-Menard, A., Afanassieff, M., Huissoud, C., Douglas, R. J., Kennedy, H. and Dehay, C. (2013). Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80: 442-457. PubMed ID: 24139044

Bhojwani, J., Shashidhara, L. S. and Sinha, P. (1997). Requirement of teashirt (tsh) function during cell fate specification in developing head structures in Drosophila. Dev. Genes Evol. 207: 137-146

Bilder, D. and Scott, M. P. (1998). Hedgehog and Wingless induce metameric pattern in the Drosophila visceral mesoderm. Dev. Biol. 201(1): 43-56. PubMed Citation: 9733572

Boube, M., Hudry, B., Immarigeon, C., Carrier, Y., Bernat-Fabre, S., Merabet, S., Graba, Y., Bourbon, H. M. and Cribbs, D. L. (2014). Drosophila melanogaster Hox Transcription Factors Access the RNA Polymerase II Machinery through Direct Homeodomain Binding to a Conserved Motif of Mediator Subunit Med19. PLoS Genet 10: e1004303. PubMed ID: 24786462

Breen, T. R. and Harte, P. J. (1993). Trithorax regulates multiple homeotic genes in the bithorax and Antennapedia complexes and exerts different tissue-specific, parasegment-specific and promoter-specific effects on each. Development 117: 119-34. PubMed Citation: 7900984

Brizuela, B. J. and Kennison, J. A. (1997). The Drosophila homeotic gene moira regulates expression of engrailed and HOM genes in imaginal tissues. Mech. Dev. 65(1-2): 209-220. PubMed Citation: 9256357

Burke, T. W. and Kadonaga, J. T. (1996). Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes and Development 10: 711-727. 8598298

Capovilla, M., Kambris, Z. Botas, J. (2001). Direct regulation of the muscle-identity gene apterous by a Hox protein in the somatic mesoderm. Development 128: 1221-1230. 11262224

Carroll, S. B., et al. (1986). The localization and regulation of Antennapedia protein expression in Drosophila embryos. Cell 47: 113-22. PubMed Citation: 3093083

Casares, F., Calleja, M. and Sánchez-Herrero, E. (1996). Functional similarity in appendage specification by the Ultrabithorax and abdominal-A Drosophila HOX genes. EMBO J. 15: 3934-42. PubMed Citation: 8670898

Casares, F. and Mann, R. S. (1998). Control of antennal versus leg development in Drosophila. Nature 392(6677): 723-726. PubMed Citation: 9565034

ChÂ’ng, Q. L. and Kenyon, C. (1999). egl-27 generates anteroposterior patterns of cell fusion in C. elegans by regulating Hox gene expression and Hox protein function. Development 126: 3303-3312. PubMed Citation: 10393110

Chopra, V. S., Hong, J. W. and Levine, M. (2009a). Regulation of Hox gene activity by transcriptional elongation in Drosophila. Curr. Biol. 19: 688-693. PubMed Citation: 19345103

Chopra, V. S., Cande, J., Hong, J. W. and Levine, M. (2009b). Stalled Hox promoters as chromosomal boundaries. Genes Dev. 23(13): 1505-9. PubMed Citation: 19515973

Cimbora, D. M. and Sakonju, S. (1995). Drosophila midgut morphogenesis requires the function of the segmentation gene odd-paired. Dev. Biol. 169: 580-595. PubMed Citation: 7781900

Clandinin, T. R., et al. (1997). Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. Dev. Biol 182: 150-161. PubMed Citation: 9073457

Cordes, R., et al. (2004). Specification of vertebral identity is coupled to Notch signalling and the segmentation clock. Development 131: 1221-1233. 14960495

Cribbs, D. L., et al. (1992). Ectopic expression of the Drosophila homeotic gene proboscipedia under Antennapedia P1 control causes dominant thoracic defects. Genetics 132: 699-711. PubMed Citation: 1361474

Duncan, D., Kiefel, P. and Duncan, I. (2010). Control of the spineless antennal enhancer: direct repression of antennal target genes by Antennapedia. Dev. Biol. 347(1): 82-91. PubMed Citation: 20727877

Ekker, S. C., et al. (1994). The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. EMBO J 13: 3551-3560

Furukubo-Tokunaga, K. Flister, S. and Gehring, W. J. (1993). Functional specificity of the Antennapedia homeodomain. Proc Natl Acad Sci 90: 6360-4. PubMed Citation: 8101003

Emmons, R. B., et al. (2007). Regulation of the Drosophila distal antennal determinant spineless. Dev. Biol. 302: 412-426. Medline abstract: 17084833

Enriquez, J., et al. (2010). Multi-step control of muscle diversity by Hox proteins in the Drosophila embryo. Development 137(3): 457-66. PubMed Citation: 20056681

Gangloff, Y. G., Pointud, J. C., Thuault, S., Carre, L., Romier, C., Muratoglu, S., Brand, M., Tora, L., Couderc, J. L. and Davidson, I. (2001). The TFIID components human TAF(II)140 and Drosophila BIP2 (TAF(II)155) are novel metazoan homologues of yeast TAF(II)47 containing a histone fold and a PHD finger. Mol. Cell. Biol. 21: 5109-5121

Gerasimova, T. I. and Corces, V. G. (1998). Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92(4): 511-521

Gibson, G., Wemple, M. and Helden, S. v. (1999). Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster. Genetics 151: 1081-1091

Gilchrist, D. A., et al. (2008). NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22: 1921-1933. PubMed Citation: 18628398

Glicksman, M. S. and Brower, D. L. (1990). Persistent ectopic expression of Drosophila homeotic genes resulting from maternal deficiency of the extra sex combs gene product. Dev Biol 142: 422-31

Gonzalez, P., Uhlinger, K. R. and Lowe, C. J. (2016). The adult body plan of indirect developing hemichordates develops by adding a Hox-patterned trunk to an anterior larval territory. Curr Biol [Epub ahead of print]. PubMed ID: 27939313

Gonzalez-Reyes, A., Macias, A. and Morata, G. (1992). Autocatalysis and phenotypic expression of Drosophila homeotic gene Deformed: its dependence on polarity and homeotic gene function. Development 116: 1059-68

Gould, A. P., and White, R. A. H. (1992). Connectin, a target of hemeotic gene control in Drosophila. Development 116: 1163-74

Gutiérrez, L., Zurita, M., Kennison, J. A. and Vázquez, M. (2003). The Drosophila trithorax group gene tonalli (tna) interacts genetically with the Brahma remodeling complex and encodes an SP-RING finger protein. Development 130: 343-354. 12466201

Herke, S. W. Serio, N. V. and Rogers, B. T. (2005). Functional analyses of tiptop and Antennapedia in the embryonic development of Oncopeltus fasciatus suggests an evolutionary pathway from ground state to insect legs. Development 132: 27-34. 15563520

Heuer, J. G. and Kaufman, T. C. (1992). Homeotic genes have specific functional roles in the establishment of the Drosophila embryonic peripheral nervous system. Development 115: 35-47

Heuer, J. G., Li, K and Kaufman, T. C. (1995). The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development 121: 3861-3876

Hittinger, C. T., Stern, D. L. and Carroll, S. B. (2005). Pleiotropic functions of a conserved insect-specific Hox peptide motif. Development 132: 5261-5270. PubMed Citation: 16267091

Hirth, F., Hartmann, B. and Reichert, H. (1998). Homeotic gene action in embryonic brain development of Drosophila. Development 125: 1579-1589

Hisa, T. et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 23: 450-459. PubMed citation: 14713950

Hooper, J. E., et al. (1992). Comparative studies of Drosophila Antennapedia genes. Genetics 132: 453-69

Jaffe, L., Ryoo, H. D. and Mann, R. S. (1997). A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila. Genes Dev 11 (10): 1327-1340

Jiang, N., Emberly, E., Cuvier, O. and Hart, C. M. (2009). Genome-wide mapping of BEAF binding sites in Drosophila links BEAF to transcription. Mol. Cell. Biol. 29(13): 3556-68. PubMed Citation: 19380483

Johnston, L. A., et al. (1998). The homeobox gene cut interacts genetically with the homeotic genes proboscipedia and Antennapedia. Genetics 149(1): 131-142

Juan, A. H. and Ruddle, F. H. (2003). Enhancer timing of Hox gene expression: deletion of the endogenous Hoxc8 early enhancer. Development 130: 4823-4834. 12917291

Jung, S. H., Evans, C. J., Uemura, C. and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132: 2521-2533. PubMed citation: 15857916

Juven-Gershon, T., Hsu, J. Y. and Kadonaga, J. T. (2008). Caudal, a key developmental regulator, is a DPE-specific transcriptional factor. Genes Dev. 22(20): 2823-30. PubMed Citation: 18923080

Kagoshima, H., Cassata, G. and Burglin, T. R. (1999). A Caenorhabditis elegans homeobox gene expressed in the male tail, a link between pattern formation and sexual dimorphism? Dev. Genes Evol. 209(1): 59-62

Kaplan, C. D., Morris, J. R., Wu, C. and Winston, F. (2000). Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14: 2623-2634. PubMed Citation: 11040216

Karlsson, D., Baumgardt, M. and Thor, S. (2010). Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol. 8(5): e1000368. PubMed Citation: 20485487

Katsuyama, T., Sugawara, T., Tatsumi, M., Oshima, Y., Gehring, W. J., Aigaki, T. and Kurata, S. (2005). Involvement of winged eye encoding a chromatin-associated bromo-adjacent homology domain protein in disc specification. Proc. Natl. Acad. Sci. 102: 15918-15923. PubMed Citation: 16247005

Kennison, J. A. and Tamkun, J. W. (1988). Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc. Natl. Acad. Sci. 85: 8136-8140

Kuert, P. A., Hartenstein, V., Bello, B. C., Lovick, J. K. and Reichert, H. (2014). Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Dev Biol 390: 102-115. PubMed ID: 24713419

Kim, S. N., Jung, K. I., Chung, H. M., Kim, S. H. and Jeon, S. H. (2008). The pleiohomeotic gene is required for maintaining expression of genes functioning in ventral appendage formation in Drosophila melanogaster. Dev. Biol. 319(1): 121-9. PubMed Citation: 18495104

Kimoto, M., Tsubota, T., Uchino, K., Sezutsu, H. and Takiya, S. (2014). Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland of Bombyx mori. Dev Biol 386: 64-71. PubMed ID: 24333180

Kourakis, M. J., et al. (1997). Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev. Biol. 190(2): 284-300

Kühnlein, R.P., et al. (1994). spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J 13: 168-179

Kurata, S., et al. (2000). Notch signaling and the determination of appendage identity. Proc. Natl. Acad. Sci. 97: 2117-2122

LaJeunesse, D. and Shearn, A. (1995). Trans-regulation of thoracic homeotic selector genes of the Antennapedia and bithorax complexes by the trithorax group genes: absent, small, and homeotic discs 1 and 2. Mech. Dev. 53: 123-39

Laslo, P., Spooner, C. J., Warmflash, A., Lancki, D. W., Lee, H. J., Sciammas, R., Gantner, B. N., Dinner, A. R. and Singh, H. (2006). Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126: 755-766. PubMed Citation: 16923394

Laughon, A., et al. (1986). Structure of transcripts from the homeotic Antennapedia gene of D. melanogaster: two promoters control the major protein-coding region. Mol Cell Biol. 6: 4676-4689

Lee, C., et al. (2008). NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol. 28: 3290-3300. PubMed Citation: 18332113

Le Roux, I., et al. (1993). Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties. Proc Natl Acad Sci 90: 9120-4

Lin, L. and McGinnis, W. (1992). Mapping functional specificity in the Dfd and Ubx homeo domains. Genes Dev 6: 1071-81

Lewis, E. B., et al. (2003). Evolution of the homeobox complex in the Diptera. Curr. Biol. 13: R587-R588. 12906807

Li, X. and McGinnis, W. (1999). Activity regulation of Hox proteins, a mechanism for altering functional specificity in development and evolution. Proc. Natl. Acad. Sci. 96: 6802-6807

Liu, J. and Fire, A. (2000). Overlapping roles of two Hox genes and the exd ortholog ceh-20 in diversification of the C. elegans postembryonic mesoderm. Development 127: 5179-5190

Lo, P. C. H., Skeath, J. B., Gajewski, K. Schulz, R. A. and Frasch, M. (2002). Homeotic genes autonomously specify the anteroposterior subdivision of the Drosophila dorsal vessel into aorta and heart. Dev. Bio. 251: 307-319. 12435360

Lu, H.-C., et al. (1997). Retinoid signaling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation. Development 124: 1643-1651. 9165113

Lu, Q., et al. (1995). Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol. Cell. Biol. 15 (7): 3786-3795

Maloof, J. N., et al. (1999). A Wnt signaling pathway controls Hox gene expression and neuroblast migration in C. elegans. Development 126(1): 37-49

Mandal, L., et al. (2007). A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446: 320-324. PubMed citation: 17361183

Mathies, L.D., Kerridge, S. and Scott, M.P. (1994). Role of the teashirt gene in Drosophila midgut morphogenesis: secreted proteins mediate the action of homeotic genes. Development 120: 2799-2809

McCormick, A., et al. (1995). Homeotic response elements are tightly linked to tissue-specific elements in a transcriptional enhancer of the teashirt gene. Development 121: 2799-2812

Merabet, S., Kambris, Z., Capovilla, M., Berenger, H., Pradel, J. and Graba, Y. (2003). The hexapeptide and linker regions of the AbdA Hox protein regulate its activating and repressive functions. Dev. Cell 4: 761-768. PubMed Citation: 12737810

Miller, D. F. B., et al. (2001). Homeotic Complex (Hox) gene regulation and homeosis in the mesoderm of the Drosophila melanogaster embryo: the roles of signal transduction and cell autonomous regulation. Mech. Dev. 102: 17-32. 11287178

Morata, G. and Sanchez-Herrero, E. (1998). Pulling the fly's leg. Nature 392(6677): 657-658. PubMed Citation: 9565026

Oh, S. K., Scott. M. P. and Sarnow, P. (1992). Homeotic gene Antennapedia mRNA contains 5'-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev. 6: 1643-53. PubMed Citation: 1355457

Okano, H. and Temple, S. (2009). Cell types to order: temporal specification of CNS stem cells. Curr. Opin. Neurobiol. 19: 112-119. PubMed Citation: 19427192

Orii, H., et al. (1999). The planarian HOM/HOX homeobox genes (Plox) expressed along the anteroposterior axis. Dev. Biol. 210(2): 456-68. PubMed Citation: 10357903

Peltenburg, L. T. and Murre, C. (1997). Specific residues in the Pbx homeodomain differentially modulate the DNA-binding activity of Hox and Engrailed proteins. Development 124 (5): 1089-1098. PubMed Citation: 9056783

Peterson, M. D., et al. (1999). The embryonic expression pattern of labial, posterior homeotic complex genes and the teashirt homologue in an apterygote insect. Dev. Genes Evol. 209: 77-90. PubMed Citation: 10022951

Plaza, S., et al. (2001). Molecular basis for the inhibition of Drosophila eye development by Antennapedia. EMBO J. 20: 802-811. 11179224

Papadopoulos, D. K., et al. (2011). Functional synthetic Antennapedia genes and the dual roles of YPWM motif and linker size in transcriptional activation and repression. Proc. Natl. Acad. Sci. 108(29): 11959-64. PubMed Citation: 21712439

Prince, F., et al. (2008). The YPWM motif link Antennapedia to the basal transcriptional machinery. Development 135: 1669-1679. PubMed Citation: 18367556

Prokop, A ., et al. (1998). Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mech. Dev. 74(1-2): 99-110. PubMed Citation: 9651493

Qian, Y. Q., et al. (1992). NMR structure determination reveals that the homeodomain is connected through a flexible linker to the main body in the Drosophila Antennapedia protein. Proc. Natl. Acad. Sci. 89: 10738-42. PubMed Citation: 1359544

Reinitz, J. and Levine, M. (1990). Control of the initiation of homeotic gene expression by the gap genes giant and tailless in Drosophila. Dev. Biol. 140: 57-72. PubMed Citation: 1972684

Reuter, R. and Scott, M. P. (1990). Expression and function of the homoeotic genes Antennapedia and Sex combs reduced in the embryonic midgut of Drosophila. Development 109: 289-303. PubMed Citation: 1976087

Riley, G. R., et al. (1991). Positive and negative control of the Antennapedia promoter P2. Dev. Suppl. 1: 177-85. PubMed Citation: 1683801

Rogulja-Ortmann, A., Renner, S. and Technau, G. M. (2008). Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development 135(20): 3435-45. PubMed Citation: 18799545

Ross, J. M. and Zarkower, D. (2003). Polycomb group regulation of Hox gene expression in C. elegans. Dev. Cell 4: 891-901. 12791273

Rougvie, A. E. and Ambros, V. (1995). The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development 121: 2491-2500. PubMed Citation: 7671813

Roy, S., Shashidhara, L. S. and VijayRaghavan, K. (1997). Muscles in the Drosophila second thoracic segment are patterned independently of autonomous homeotic gene function. Curr. Biol. 7 (4): 222-227. PubMed Citation: 9094307

Saffman, E. E. and Krasnow, M. A. (1994). A differential response element for the homeotics at the Antennapedia P1 promoter of Drosophila. Proc Natl Acad Sci 91: 7420-7424. PubMed Citation: 7914367

Salser, S. J. and Kenyon, C. (1992). Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature 355: 255-8. PubMed Citation: 1346230

Sanlioglu, S., et al. (1998). Regulation of a Purkinje cell-specific promoter by homeodomain proteins: repression by engrailed-2 vs. synergistic activation by Hoxa5 and Hoxb7. J. Neurobiol. 36(4): 559-71. PubMed Citation: 9740027

Saunders, A., Core, L. J. and Lis, J. T. (2006). Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7: 557-567. PubMed Citation: 16936696

Scanga, S., Manoukian, A. and Larsen, E. (1995). Time- and concentration-dependent response of the Drosophila antenna imaginal disc to Antennapedia. Dev Biol 169: 673-682. PubMed Citation: 7781907

Shiga, Y., et al. (2002). Evolving role of Antennapedia protein in arthropod limb patterning. Development 129: 3555-3561. 12117806

Southworth J. W. and Kennison, J. A. (2002). Transvection and silencing of the Scr homeotic gene of Drosophila melanogaster. Genetics 161: 733-746. 12072469

Srinivasan, R., Mager, G. M., Ward, R. M., Mayer, J. and Svaren, J. (2006). NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J. Biol. Chem. 281: 15129-15137. PubMed Citation: 16574654

Stratford, T. H., Kostakopoulou, K. and Maden, M. (1997). Hoxb-8 has a role in establishing early anterior-posterior polarity in chick forelimb but not hindlimb. Development 124(21): 4225-4234. PubMed Citation: 9334271

Stroeber, W.L., Jorgensen, E.M. and Garber, M.L. (1986). Multiple transcripts from the Antennapedia gene of D. menalogaster. Mol Cell Biol. 6: 4667-4675. PubMed Citation: 2879222

Struhl, G. (1981). A homeotic mutation transforming leg to eye antenna in Drosophila. Nature 292: 635-638. PubMed Citation: 725435

Strutt, H., Cavalli, G. and Paro, R. (1997). Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 16:3621-3632. PubMed Citation: 9218803

Suska, A., Miguel-Aliaga, I. and Thor, S. (2011). Segment-specific generation of Drosophila Capability neuropeptide neurons by multi-faceted Hox cues. Dev. Biol. 353(1): 72-80. PubMed Citation: 21354130

Svaren, J., Sevetson, B. R., Apel, E. D., Zimonjic, D. B., Popescu, N. C. and Milbrandt, J. (1996). NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol. Cell. Biol. 16: 3545-3553. PubMed Citation: 8668170

Talbert, P. B. and Garber, R. L. (1994). The Drosophila homeotic mutation Nasobemia (AntpNs) and its revertants: an analysis of mutational reversion. Genetics 138: 709-720. PubMed Citation: 7851768

Tiret, L., et al. (1998). Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice. Development 125(2): 279-291. 9486801

Tolhuis, B., et al. (2011). Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet. 7(3): e1001343. PubMed Citation: 21455484

Tsubota, T., Saigo, K. and Kojima, T. (2008). Hox genes regulate the same character by different strategies in each segment. Mech. Dev. 125(9-10): 894-905. PubMed Citation: 18586088

Tsuji, T., Hasegawa, E. and Isshiki, T. (2008). Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development 135(23): 3859-69. PubMed Citation: 18948419

Vazquez, M., Moore, L. and Kennison, J. A. (1999). The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the Brahma chromatin-remodeling factor to regulate transcription. Development 126: 733-742

Wada, T., et al. (1998). DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12: 343-356. PubMed Citation: 9450929

Walldorf, U., Binner, P. and Fleig, R. (2000). Hox genes in the honey bee Apis mellifera Dev. Genes Evol. 210: 483-492. 11180797

Wharton, K. A., et al. (1999). Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 152: 629-640

Wiellette, E. L. and McGinnis, W. (1999a). Hox genes differentially regulate Serrate to generate segment-specific structures. Development 126(9): 1985-1995

Wiellette, E. L., et al. (1999b). spen encodes an RNP motif protein that interacts with Hox pathways to repress the development of head-like sclerites in the Drosophila trunk. Development 126: 5373-5385. 10556062

Wu, C. H., et al. (2005). Molecular characterization of Drosophila NELF. Nucleic Acids Res 33: 1269-1279. PubMed Citation: 15741180

Wu, X., et al. (2001). Thoracic patterning by the Drosophila gap gene hunchback. Dev. Bio. 237: 79-92. 11518507

Yamaguchi, Y., Wada, T. and Handa, H. (1998). Interplay between positive and negative elongation factors: Drawing a new view of DRB. Genes Cells 3: 9-15. PubMed Citation: 9581978

Ye, X., et al. (1997). Ultrabithorax and Antennapedia 5' untranslated regions promote developmentally regulated internal translation initiation. Mol. Cell. Biol. 17: 1714-1721

Yao, L. C., et al. (1999). A common mechanism for antenna-to-leg transformation in Drosophila: suppression of homothorax transcription by four HOM-C genes. Dev. Biol. 211(2): 268-76.

Yu, H., Seah, A. and Sternberg, P. W. (2010). Re-programming of C. elegans male epidermal precursor fates by Wnt, Hox, and LIN-12/Notch activities. Dev. Biol. 345(1): 1-11. PubMed Citation: 20478294

Zehavi, Y., Sloutskin, A., Kuznetsov, O. and Juven-Gershon, T. (2014). The core promoter composition establishes a new dimension in developmental gene networks. Nucleus 5:4, 1-6. PubMed ID: 25032831

Zeng, W., et al. (1993). Ectopic expression and function of the Antp and Scr homeotic genes: the N terminus of the homeodomain is critical to functional specificity. Development 118: 339-52. PubMed Citation: 7900989

Zhang, H., et al. (2003). Global regulation of Hox gene expression in C. elegans by a SAM domain protein. Dev. Cell 4: 903-915. 12791274

Zink, B., et al. (1991). Direct interaction of the Polycomb protein with Antennapedia regulatory sequences in polytene chromosomes of Drosophila melanogaster. EMBO J 10: 153-62. PubMed Citation: 1671215

Zhu, A. and Kuziora, M. A. (1996). Homeodomain interaction with the ß subunit of the general transcription factor TFIIE. J. Biol. Chem. 271: 20993-96. PubMed Citation: 8702862

Zorin, I. D., Gerasimova, T. I. and Corces, V. G. (1999). The lawc gene is a new member of the trithorax-Group that affects the function of the gypsy insulator of Drosophila. Genetics 152: 1045-1055. PubMed Citation: 10388823

Antennapedia: Biological Overview | Evolutionary Homologs | Regulation | Targets of activity | Protein Interactions | Developmental Biology | Effects of Mutation

date revised: 22 January 2017

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.