logo What's new in edition 94
May 2022
Gene sites new with this edition

Gene sites new with this edition

anastral spindle 3
Ataxin 7
Ca2+-channel protein α1 subunit D
Glial Lazarillo
HP1-HOAP-interacting protein
Peptidoglycan recognition protein LA
sol narae
taxi (delilah)
windpipe
wuho
yata
What was new in recent past editions
[edition 94] May 2022
[edition 93] January 2022
[edition 92] September 2021
[edition 91] May 2021
[edition 90] January 2021
[edition 89] September 2020
[edition 88] May 2020
[edition 87] January 2020
[edition 86] September 2019
[edition 85] May 2019
[edition 84] January 2019

The Interactive Fly was first released July/August 1996, with updates provided at approximately one month intervals, through September 1997 (edition 13). Updating quarterly started with edition 14. With edition 40, the Interactive Fly began to schedule updates three times a year: fall, winter and spring.


Gene sites new with this edition of the Interactive Fly:

anastral spindle 3
The centrosome is the main microtubule-organizing center in animal cells. It comprises of two centrioles and the surrounding pericentriolar material. Protein organization at the outer layer of the centriole and outward has been studied extensively; however, an overall picture of the protein architecture at the centriole core has been missing. This paper reports a direct view of Drosophila centriolar proteins at ~50-nm resolution. This reveals a Sas6 ring at the C-terminus, where it overlaps with the C-terminus of Cep135. The ninefold symmetrical pattern of Cep135 is further conveyed through Ana1-Asterless axes that extend past the microtubule wall from between the blades. Ana3 and Rcd4, whose termini are close to Cep135, are arranged in ninefold symmetry that does not match the above axes. During centriole biogenesis, Ana3 and Rcd4 are sequentially loaded on the newly formed centriole and are required for centriole-to-centrosome conversion through recruiting the Cep135-Ana1-Asterless complex. Together, these results provide a spatiotemporal map of the centriole core and implications of how the structure might be built (Tian, 2021).

Ataxin 7
Atxn7, a subunit of SAGA chromatin remodeling complex, is subject to polyglutamine expansion at the amino terminus, causing spinocerebellar ataxia type 7 (SCA7), a progressive retinal and neurodegenerative disease. Within SAGA, the Atxn7 amino terminus anchors Non-stop, a deubiquitinase, to the complex. To understand the scope of Atxn7-dependent regulation of Non-stop, substrates of the deubiquitinase were sought. This revealed Non-stop, dissociated from Atxn7, interacts with Arp2/3 and WAVE regulatory complexes (WRC), which control actin cytoskeleton assembly. There, Non-stop countered polyubiquitination and proteasomal degradation of WRC subunit SCAR. Dependent on conserved WRC interacting receptor sequences (WIRS), Non-stop augmentation increased protein levels, and directed subcellular localization, of SCAR, decreasing cell area and number of protrusions. In vivo, heterozygous mutation of SCAR did not significantly rescue knockdown of Atxn7, but heterozygous mutation of Atxn7 rescued haploinsufficiency of SCAR (Cloud, 2019).

Ca2+-channel protein α1 subunit D
Endocytosis regulation by activity-dependent Ca2+ influx is discussed for mammalian and invertebrate synapses. At the Drosophila NMJ, separate Ca2+ entry routes for differential exo- and endocytosis regulation have been postulated, and the SV-associated calcium channel Flower has been suggested to contribute to this function. This study identified Cav1 channels within the periphery of AZs as a distinct entry route for Ca2+-dependent augmentation of SV endocytosis. Although the precise underlying mechanisms remain to be investigated, an attractive hypothesis is that Cav1 may serve as an activity-dependent switch to direct recycling into different SV pools. In basket cells, Cav1 mediated Ca2+ influx has been speculated to mobilize vesicles into the releasable pool to maintain synaptic transmission during high-frequency bursting. Similarly, at the mouse NMJ, pharmacological blockade of L-type Cav1 channels decreases FM2-10 loading and quantal release upon high-frequency stimulation. This is in line with the findings of increased synaptic depression, reduced SV reacidification, decreased FM1-43 uptake, and reduced PSC recovery after RRP depletion upon reduction of presynaptic Cav1 function. However, the effects of Cav1-kd manifest within a few seconds. Unless recycling and SV reformation are ultrafast, this seems too fast for SV reuse. In cultured hippocampal neurons, for example, SVs are not reused during the first 200 APs, irrespective of stimulation frequency between 5 and 40 Hz. However, given that endocytic proteins can also function in release site clearance, reduced endocytosis in Cav1-kd may increase synaptic depression and decrease recovery from RRP depletion indirectly as a result of reduced release site clearance. Additional effects of Cav1 channels on other steps in the SV cycle, such as SV priming, can also not be excluded (Krick, 2021).

Glial Lazarillo
Lipid shuttling between neurons and glia contributes to the development and function, and stress responses of the nervous system. To understand how a neuron acquires its lipid supply from specific lipoproteins and their receptors, A combined genetic, transcriptome, and biochemical analyses was performed in the developing Drosophila larval brain. This study reports, the astrocyte-derived secreted lipocalin Glial Lazarillo (GLaz), a homolog of human Apolipoprotein D (APOD), and its neuronal receptor, the brain-specific short isoforms of Drosophila lipophorin receptor 1 (LpR1-short), cooperatively mediate neuron-glia lipid shuttling and support dendrite morphogenesis. The isoform specificity of LpR1 defines its distribution, binding partners, and ability to support proper dendrite growth and synaptic connectivity. By demonstrating physical and functional interactions between GLaz/APOD and LpR1, this study elucidated molecular pathways mediating lipid trafficking in the fly brain, and provide in vivo evidence indicating isoform-specific expression of lipoprotein receptors as a key mechanism for regulating cell-type specific lipid recruitment (Yin, 2021).

HP1-HOAP-interacting protein
Drosophila chromosomes are elongated by retrotransposon attachment, a process poorly understood. This study characterized a mutation affecting the HipHop telomere-capping protein. In mutant ovaries and the embryos that they produce, telomere retrotransposons are activated and transposon RNP accumulates. Genetic results are consistent hiphop mutation weakening the efficacy of HP1-mediated silencing while leaving piRNA-based mechanisms largely intact. Remarkably, mutant females display normal fecundity suggesting that telomere de-silencing is compatible with germline development. Moreover, unlike prior mutants with overactive telomeres, the hiphop stock does not over-accumulate transposons for hundreds of generations. This is likely due to the loss of HipHop's abilities both to silence transcription and to recruit transposons to telomeres in the mutant. Furthermore, embryos produced by mutant mothers experience a checkpoint activation, and a further loss of maternal HipHop leads to end-to-end fusion and embryonic arrest. Telomeric retroelements fulfill an essential function yet maintain a potentially conflicting relationship with their Drosophila host. This study thus showcases a possible intermediate in this arms race in which the host is adapting to over-activated transposons while maintaining genome stability. These results suggest that the collapse of such a relationship might only occur when the selfish element acquires the ability to target non-telomeric regions of the genome. HipHop is likely part of this machinery restricting the elements to the gene-poor region of telomeres. Lastly, the hiphop mutation behaves as a recessive suppressor of PEV that is mediated by centric heterochromatin, suggesting its broader effect on chromatin not limited to telomeres (Cui, 2021).

Peptidoglycan recognition protein LA
Tissue homeostasis is achieved by balancing stem cell maintenance, cell proliferation and differentiation, as well as the purging of damaged cells. Elimination of unfit cells maintains tissue health: however, the underlying mechanisms driving competitive growth when homeostasis fails, for example, during tumorigenesis, remain largely unresolved. Using a Drosophila intestinal model, this study found that tumor cells outcompete nearby enterocytes (ECs) by influencing cell adhesion and contractility. This process relies on activating the immune-responsive Relish/NF-κB pathway to induce EC delamination and requires a JNK-dependent transcriptional upregulation of the peptidoglycan recognition protein PGRP-LA. Consequently, in organisms with impaired PGRP-LA function, tumor growth is delayed and lifespan extended. This study identifies a non-cell-autonomous role for a JNK/PGRP-LA/Relish signaling axis in mediating death of neighboring normal cells to facilitate tumor growth. It is proposed that intestinal tumors 'hijack' innate immune signaling to eliminate enterocytes in order to support their own growth (Zhou, 2021).

sol narae
Wnt/ Wingless (Wg) is essential for embryonic development and adult homeostasis in all metazoans, but the mechanisms by which secreted Wnt/Wg is processed remain largely unknown. A Drosophila Sol narae (Sona) is a member of A Disintegrin And Metalloprotease with ThromboSpondin motif (ADAMTS) family, and positively regulates Wg signaling by promoting Wg secretion. This study reports that Sona and Wg are secreted by both conventional Golgi and exosomal transports, and Sona cleaves extracellular Wg at the two specific sites, leading to the generation of N-terminal domain (NTD) and C-terminal domain (CTD) fragments. The cleaved forms of extracellular Wg were detected in the extracellular region of fly wing discs, and its level was substantially reduced in sona mutants. Transient overexpression of Wg-CTD increased wing size while prolonged overexpression caused lethality and developmental defects. In contrast, Wg-NTD did not induce any phenotype. Moreover, the wing defects and lethality induced by sona RNAi were considerably rescued by Wg-CTD, indicating that a main function of extracellular Sona is the generation of Wg-CTD. Wg-CTD stabilized cytoplasmic Armadillo (Arm) and had genetic interactions with components of canonical Wg signaling. Wg-CTD also induced Wg downstream targets such as Distal-less (Dll) and Vestigial (Vg). Most importantly, Cyclin D (Cyc D) was induced by Wg-CTD but not by full-length Wg. Because Sona also induces Cyc D in a cell non-autonomous manner, Wg-CTD generated by Sona in the extracellular region activates a subset of Wg signaling whose major function is the regulation of cell proliferation (Won, 2019).

taxi (delilah)
Coordinated animal locomotion depends on the development of functional proprioceptors. While early cell-fate determination processes are well characterized, little is known about the terminal differentiation of cells within the proprioceptive lineage and the genetic networks that control them. This work describes a gene regulatory network consisting of three transcription factors-Prospero (Pros), D-Pax2, and Delilah (Dei)-that dictates two alternative differentiation programs within the proprioceptive lineage in Drosophila. D-Pax2 and Pros control the differentiation of cap versus scolopale cells in the chordotonal organ lineage by, respectively, activating and repressing the transcription of dei. Normally, D-Pax2 activates the expression of dei in the cap cell but is unable to do so in the scolopale cell where Pros is co-expressed. It was further shown that D-Pax2 and Pros exert their effects on dei transcription via a 262 bp chordotonal-specific enhancer in which two D-Pax2- and three Pros-binding sites were identified experimentally. When this enhancer was removed from the fly genome, the cap- and ligament-specific expression of dei was lost, resulting in loss of chordotonal organ functionality and defective larval locomotion. Thus, coordinated larval locomotion depends on the activity of a dei enhancer that integrates both activating and repressive inputs for the generation of a functional proprioceptive organ (Avetisyan, 2021).

windpipe
Proteoglycans, a class of carbohydrate-modified proteins, often modulate growth factor signaling on the cell surface. However, the molecular mechanism by which proteoglycans regulate signal transduction is largely unknown. Using a recently-developed glycoproteomic method, this study found that Windpipe (Wdp) is a novel chondroitin sulfate proteoglycan (CSPG) in Drosophila. Wdp is a single-pass transmembrane protein with leucine-rich repeat (LRR) motifs and bears three CS sugar chain attachment sites in the extracellular domain. Wdp modulates the Hedgehog (Hh) pathway. In the wing disc, overexpression of wdp inhibits Hh signaling, which is dependent on its CS chains and the LRR motifs. wdp null mutant flies show a specific defect (supernumerary scutellar bristles) known to be caused by Hh overexpression. RNAi knockdown and mutant clone analyses showed that loss of wdp leads to the upregulation of Hh signaling. Altogether, this study demonstrates a novel role of CSPGs in regulating Hh signaling (Takemura, 2020).

wuho
WD40 proteins control many cellular processes via protein interactions. Drosophila Wuho controls fertility, although the involved mechanisms are unclear. This study shows that Wh promotion of Mei-p26 (a human TRIM32 ortholog) function maintains ovarian germ cell homeostasis. Wh and Mei-p26 are epistatically linked, with wh and mei-p26 mutants showing nearly identical phenotypes, including germline stem cell (GSC) loss, stem-cyst formation due to incomplete cytokinesis between GSCs and daughter cells, and overproliferation of GSC progeny. Mechanistically, Wh interacts with Mei-p26 in different cellular contexts to induce cell type-specific effects. In GSCs, Wh and Mei-p26 promote BMP stemness signaling for proper GSC division and maintenance. In GSC progeny, Wh and Mei-p26 silence nanos translation, downregulate a subset of microRNAs involved in germ cell differentiation and suppress ribosomal biogenesis via dMyc to limit germ cell mitosis. This study also found that the human ortholog of Wh (WDR4) interacts with TRIM32 in human cells. These results show that Wh is a regulator of Mei-p26 in Drosophila germ cells and suggest that the WD40-TRIM interaction may also control tissue homeostasis in other stem cell systems (Rastegari, 2020).

yata
yata mutants of Drosophila melanogaster exhibit phenotypes including progressive brain shrinkage, developmental abnormalities and shortened lifespan, whereas in mammals, null mutations of the yata ortholog Scyl1 result in motor neuron degeneration. yata mutation also causes defects in the anterograde intracellular trafficking of a subset of proteins including APPL, which is the Drosophila ortholog of mammalian APP, a causative molecule in Alzheimer's disease. SCYL1 binds and regulates the function of coat protein complex I (COPI) in secretory vesicles. This study reveals a role for the Drosophila YATA protein in the proper localization of COPI. Immunohistochemical analyses performed using confocal microscopy and structured illumination microscopy showed that YATA colocalizes with COPI and GM130, a cis-Golgi marker. Analyses using transgenically expressed YATA with a modified N-terminal sequence revealed that the N-terminal portion of YATA is required for the proper subcellular localization of YATA. Analysis using transgenically expressed YATA proteins in which the C-terminal sequence was modified revealed a function for the C-terminal portion of YATA in the subcellular localization of COPI. Notably, when YATA was mislocalized, it also caused the mislocalization of COPI, indicating that YATA plays a role in directing COPI to the proper subcellular site. Moreover, when both YATA and COPI were mislocalized, the staining pattern of GM130 revealed Golgi with abnormal elongated shapes. Thus, these in vivo data indicate that YATA plays a role in the proper subcellular localization of COPI (Saito, 2021).


date revised: 1 May 2022

Home page: The Interactive Fly © 2022 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.