Ras oncogene at 85D

REFERENCES (part 1/3)

Abdellatif, M., et al., (1998). A ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy. Mol. Cell. Biol. 18(11): 6729-36. PubMed Citation: 9774686

Adams, A., et al. (2000). Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J. Biol Chem. 275: 27414-27420. 10851244

Albanese, C., et al. (1995). Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270: 23589-23597. PubMed Citation: 7559524

Alic, N., Giannakou, M. E., Papatheodorou, I., Hoddinott, M. P., Andrews, T. D., Bolukbasi, E. and Partridge, L. (2014). Interplay of dFOXO and two ETS-family transcription factors determines lifespan in Drosophila melanogaster. PLoS Genet 10: e1004619. PubMed ID: 25232726

Ancrile, B., Lim, K. H. and Counter, C. M. (2007). Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev. 21(14): 1714-9. PubMed citation: 17639077

Andersen, D. S., Colombani, J., Palmerini, V., Chakrabandhu, K., Boone, E., Rothlisberger, M., Toggweiler, J., Basler, K., Mapelli, M., Hueber, A. O. and Leopold, P. (2015). The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature. PubMed ID: 25874673

Arsenian, S., et al. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J. 17(21): 6289-6299. PubMed Citation: 9799237

Artero, R. D., Castanon, I. and Baylies, M. K. (2001). The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128: 4251-4264. 11684661

Artero, R., et al. (2003). Notch and Ras signaling pathway effector genes expressed in fusion competent and founder cells during Drosophila myogenesis. Development 130: 6257-6272. 14602676

Asha, H., et al. (1999). The Rap1 GTPase functions as a regulator of morphogenesis in vivo. EMBO J. 18(3): 605-15. PubMed Citation: 9927420

Asha, H., et al. (2003). Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics 163: 203-215. 12586708

Astigarraga, S., et al. (2007). A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J. 26(3): 668-77. Medline abstract: 17255944

Atreya, K. B. and Fernandes, J. J. (2008). Founder cells regulate fiber number but not fiber formation during adult myogenesis in Drosophila. Dev. Biol. 321(1): 123-40. PubMed Citation: 18616937

Ayllon, V., et al. (2000). Protein phosphatase 1alpha is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis. EMBO J. 19: 2237-2246. PubMed Citation: 10811615

Baonza, A., Roch, F. and Martin-Blanco, E. (2000). DER signaling restricts the boundaries of the wing field during Drosophila development. Proc. Natl. Acad. Sci. 97: 7331-7335. PubMed Citation: 10860999

Beiman, M., Shilo, B.-Z. and Volk, T. (1996). Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev. 10: 2993-3002. PubMed Citation: 8957000

Belden, W. J., et al. (2007). The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev. 21: 1494-1505. Medline abstract: 17575051

Bergmann, A., et al. (1998). The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95(3): 331-41. PubMed Citation: 9814704

Berry, D. L. and Baehrecke, E. H. (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131(6): 1137-1148. PubMed Citation: 18083103

Boguski, M. S. and McCormick, F. (1993). Proteins regulating Ras and its relatives. Nature 366: 643-654. PubMed Citation: 8259209

Bohmann, D., et al. (1994). Drosophila Jun mediates Ras-dependent photoreceptor determination. Cell 78: 973-986. PubMed Citation: 7923366

Boriack-Sjodin, P. A., et al. (1998). The structural basis of the activation of Ras by Sos. Nature 394: 337-343. PubMed Citation: 9690470

Boube, M., et al. (1997). Ras1-mediated modulation of Drosophila homeotic function in cell and segment identity. Genetics 146(2): 619-628. PubMed Citation: 9178011

Boyer, B., et al. (1997). Src and Ras are involved in separate pathways in epithelial cell scattering. EMBO J. 16(19): 5904-5913. PubMed Citation: 9312048

Brambilla, R., et al. (1997). A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390(6657): 281-286. PubMed Citation: 9384379

Brock, H. W. (1987). Sequence and genomic structure of ras homologues Dmras85D and Dmras64B of Drosophila melanogaster. Gene 51 (2-3): 129-137. PubMed Citation: 3110012

Brtva, T. R., et al. (1995). Two distinct Raf domains mediate interaction with Ras. J. Biol. Chem. 270: 9809-12. PubMed Citation: 7730360

Bruinsma, J. J., et al. (2002). Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Developmental Cell 2: 567-578. 12015965

Brumby, A. M. and Richardson, H. E. (2003). scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22: 5769-5779. 14592975

Brumby, A. M., Goulding, K. R., Schlosser, T., Loi, S., Galea, R., Khoo, P., Bolden, J. E., Aigaki, T., Humbert, P. O. and Richardson, H. E. (2011). Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster: a RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. Genetics 188: 105-125. PubMed ID: 21368274

Brückner, K., et al. (2004). The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev. Cell 7: 73-84. 15239955

Brunner, D., Ducker, K., Oellers, N., Hafen, E., Scholz, H. and Klambt, C. (1994). The ETS domain protein pointed-P2 is the target of MAP kinase in the sevenless signal transduction pathway. Nature 370: 386-9

Busca, R., et al. (2000). Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19: 2900-2910.

Byrne, J. L., Paterson, H. F. and Marshall, C. J. (1996). p21Ras activation by the guanine nucleotide exchange factor Sos, requires the Sos/Grb2 interaction and a second ligand-dependent signal involving the Sos N-terminus. Oncogene 13 (10): 2055-2065

Cabernard, C. and Affolter, M. (2005). Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. Dev. Cell 9(6): 831-42. 16326394

Cacace, A. M., et al. (1999). Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol. Cell. Biol. 19(1): 229-40

Caldwell, P.E., Walkiewicz, M., and Stern, M. (2005). Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 15: 1785-1795. Medline abstract: 16182526

Cardone, M. H., et al. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392): 1318-21. 9812896

Carlier, M. F., et al. (2000). GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J. Biol. Chem. 275(29): 21946-52. 10781580

Carmena, A., et al. (2002). Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev. Biol. 244: 226-242. 11944933

Carter, B. D., Zirrgiebel, U and Barde, Y. A. (1995). Differential regulation of p21ras activation in neurons by nerve growth factor and brain-derived neurotrophic factor. J. Biol. Chem. 270: 21751-21757

Casci, T., Vinos, J. and Freeman, M. (1999). Sprouty, an intracellular inhibitor of Ras signaling. Cell 96(5): 655-65

Chabu, C. and Xu, T. (2014). Oncogenic Ras stimulates Eiger/TNF exocytosis to promote growth. Development 141(24):4729-39. PubMed ID: 25411211

Chang, C., Hopper, N. A. and Sternberg, P. W. (2000). Caenorhabditis elegans SOS-1 is necessary for multiple RAS-mediated developmental signals. EMBO J. 19: 3283-3294.

Chang, H. C., et al. (1995). phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80: 463-472

Chang, H. C. and Rubin, G. M. (1997). 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes. Dev. 11: 1132-39

Chaudhary, A., et al. (2000). Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr. Biol. 10: 551-554.

Chen, F., Barkett, M., Ram, K. T., Quintanilla, A. and Hariharan, I. K. (1997). Biological characterization of Drosophila Rapgap1, a GTPase activating protein for Rap1. Proc. Natl. Acad. Sci. 94(23): 12485-12490

Chen, H.-J., et al. (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM Kinase II. Neuron 895-904

Cheng, A. M., et al. (1998). Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95(6): 793-803

Chin, L., et al. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11(21): 2822-2834

Chin, L., et al. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400(6743): 468-72

Choy, E., et al. (1999). Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98: 69-80

Church, D. L., Guan, K. L. and Lambie, E. J. (1995). Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 121: 2525-2535

Clark, G. J., et al. (1996). Peptides containing a consensus Ras binding sequence from Raf-1 and the GTPase activating protein NF1 inhibit Ras function. Proc. Natl. Acad. Sci. 93: 1577-1581

Clarke, N., et al. (1998). Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Mol. Cell. Biol. 18(2): 1065-1073

Corbalan-Garcia, S., et al. (1998). Regulation of Sos activity by intramolecular interactions. Mol. Cell. Biol. 18(2): 880-886

Corbley, M. J. (1997). Transformation by ras suppresses expression of the neurotrophic growth factor pleiotrophin. J. Biol. Chem. 272(39): 24696-24702

Cosgaya, J. M., Latasa, M. J. and Pascual, A. (1996). Nerve growth factor and ras regulate beta-amyloid precursor protein gene expression in PC12 cells. J. Neurochem. 67: 98-104

Cutler, R. E., et al. (1998). Autoregulation of the raf-1 serine/threonine kinase. Proc. Natl. Acad. Sci. 95(16): 9214-9219

Daga, A., et al. (1996). Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev. 10: 1194-1205.

Danen, E. H., et al. (2000). Dual stimulation of Ras/Mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression. J. Cell Biol. 151(7): 1413-1422. 11134071

Datta, S. R., et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231-241

Delmas, V., et al. (2007). β-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21(22): 2923-35. PubMed citation: 18006687

Dent, P., et al. (1995). Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro. Mol. Cell. Biol. 15: 4125-4135

de Rooij, J., et al. (1998). Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396(6710): 474-7

Dhillon, A. S., et al. (2002). Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J. 21: 64-71. 11782426

Diaz-Benjumea, F. J. and Hafen, E. (1994). The sevenless signalling cassette mediates Drosophila EGF receptor function during epidermal development. Development 120: 569-78

Ding, J., Tchaicheeyan, O. and Ambrosio, L. (2010). Drosophila Raf's N terminus contains a novel conserved region and can contribute to torso RTK signaling. Genetics 184(3): 717-29. PubMed Citation: 20008569

Doggett, K., Turkel, N., Willoughby, L. F., Ellul, J., Murray, M. J., Richardson, H. E. and Brumby, A. M. (2015). BTB-zinc finger oncogenes are required for Ras and Notch-driven tumorigenesis in Drosophila. PLoS One 10: e0132987. PubMed ID: 26207831

Douziech, M., et al. (2003). Bimodal regulation of RAF by CNK in Drosophila. EMBO J. 22: 5068-5078. 14517245

Downward, J. (1994). The GRB2/Sem-5 adaptor protein. FEBS Lett. 338 (2): 113-117 (1994)

Drugan, J. K., et al. (1995). Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. J. Biol. Chem. 271: 233-237

Egan, S. E., et al. (1993). Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363 (6424): 45-51

Ehninger, D., Neff, F. and Xie, K. (2014). Longevity, aging and rapamycin. Cell Mol Life Sci 71: 4325-4346. PubMed ID: 25015322

Emerson, S. D., et al. (1995). Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface. Biochemistry 34: 6911-6918

Fan, W. T., et al. (1998). The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways. Curr. Biol. 8(16): 935-8.

Farnsworth, C. L., et al. (1995). Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376: 524-527

Feldmann P., et al. (1999). Control of growth and differentiation by Drosophila RasGAP, a homolog of p120 ras-GTPase-activating protein. Mol. Cell. Biol. 19(3): 1928-37.

Fincham, V. J., Chudleigh, A. and Frame, M. C. (1999). Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation. J. Cell Sci. 112 ( Pt 6): 947-56

Foschi, M., et al. (1997). Biphasic activation of p21(ras) by endothelin-1 sequentially activates the ERK cascade and phosphatidylinositol 3-kinase. EMBO J. 16(21): 6439-6451

Franciscovich, A. L., Mortimer, A. D., Freeman, A. A., Gu, J. and Sanyal, S. (2008). Overexpression screen in Drosophila identifies neuronal roles of GSK-3 beta/shaggy as a regulator of AP-1-dependent developmental plasticity. Genetics 180(4): 2057-71. PubMed Citation: 18832361

Freeman, A., et al. (2010). A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res. 1326: 15-29. PubMed Citation: 20193670

Freeman, M. (1994). The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev. 48: 25-33

Freedman, T. S., et al. (2006). A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc. Natl. Acad. Sci 103: 16692-16697. Medline abstract: 17075039

Fritz, J. L. and VanBerkum, M. F. A. (2000). Calmodulin and Son of sevenless dependent signaling pathways regulate midline crossing of axons in the Drosophila CNS. Development 127: 1991-2000

Fritz, J. L. and VanBerkum, M. F. A. (2002). Regulation of rho family GTPases is required to prevent axons from crossing the midline. Dev. Bio. 252: 46-58. 12453459

Gadbut, A. P., et al. (1997). Induction of the cholesterol metabolic pathway regulates the farnesylation of RAS in embryonic chick heart cells: a new role for Ras in regulating the expression of muscarinic receptors and G proteins. EMBO J. 16(24): 7250-7260

Gaengel, K. and Mlodzik, M. (2003). Egfr signaling regulates ommatidial rotation and cell motility in the Drosophila eye via MAPK/Pnt signaling and the Ras effector Canoe/AF6. Development 130: 5413-5423. 14507782

Gafuik, C. and Steller, H. (2011). A gain-of-function germline mutation in Drosophila ras1 affects apoptosis and cell fate during development. PLoS One 6(8): e23535. PubMed Citation: 21858158

Galaktionov, K., Jessus, c. and Beach, D. (1995). Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev. 9: 1046-1058. PubMed Citation: 7744247

Gallio, M., et al. (2004). Rhomboid 3 orchestrates Slit-independent repulsion of tracheal branches at the CNS midline. Development 131: 3605-3614. 15229181

Gaul, U., Mardon, G. and Rubin, G. M. (1992). A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68(6): 1007-19. PubMed Citation: 1547500

Gayko, U., et al. (1999). Synergistic activities of multiple phosphotyrosine residues mediate full signaling from the Drosophila Torso receptor tyrosine kinase. Proc. Natl. Acad. Sci. 96(2): 523-8. PubMed Citation: 9892666

Gazin, C., Wajapeyee, N., Gobeil, S., Virbasius, C. M. and Green, M. R. (2007). An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449(7165): 1073-7. PubMed citation: 17960246

Gazin, C., Wajapeyee, N., Gobeil, S., Virbasius, C. M. and Green, M. R. (2007). An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449: 1073-1077. PubMed ID: 17960246

Gerald, D., et al. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118(6): 781-94. 15369676

Ghiglione, C., Perrimon, N. and Perkins, L. A. (1999). Quantitative variations in the level of MAPK activity control patterning of the embryonic termini in Drosophila. Dev. Biol. 205(1): 181-93. PubMed Citation: 9882506

Ghosh, S. and Bell, R. M. (1994). Identification of discrete segments of human Raf-1 kinase critical for high affinity binding to Ha-Ras. J. Biol. Chem. 269: 30785-30788. PubMed Citation: 7983008

Giese, K. P., et al. (2001). Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology 41: 791-800. 11640934

Giglione, C. and Parmeggiani, A. (1998). Raf-1 is involved in the regulation of the interaction between guanine nucleotide exchange factor and Ha-ras. Evidences for a function of Raf-1 and phosphatidylinositol 3-kinase upstream to Ras. J. Biol. Chem. 273(52): 34737-44

Gille, H. and Downward, J. (1999). Multiple ras effector pathways contribute to G(1) cell cycle progression. J. Biol. Chem. 274(31): 22033-40

Ginty, D. D., Bonni, A. and Greenberg, M. E. (1994). Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77: 713-25

Godenschwege, T. A., et al. (2004). Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur. J. Neurosci. 20: 611-622. PubMed Citation: 15255973

Goldstein, J. L., Glossip, D., Nayak, S. and Kornfeld, K. (2006), The CRAL/TRIO and GOLD domain protein CGR-1 promotes induction of vulval cell fates in Caenorhabditis elegans and interacts genetically with the Ras signaling pathway. Genetics 172(2): 929-42. 16219793

Golembo, M., Raz, E. and Shilo, B.-Z. (1996). The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122: 3363-3370

Grammatikakis. N., et al. (1999). p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol. Cell. Biol. 19(3): 1661-72

Greenwood, S. and Struhl, G. (1997). Different levels of Ras activity can specify distinct transcriptional and morphological consequences in early Drosophila embryos. Development 124(23): 4879-4886

Greenwood, S. and Struhl, G. (1999). Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126: 5795-5808. PubMed Citation: 10572054

Guo, J. Y., et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25(5): 460-70. PubMed Citation: 21317241

Gupta, S., et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129(5): 957-68. PubMed citation: 17540175

Hajnal, A., Whitfield, C. W. and Kim, S. K. (1997). Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. Genes Dev. 11(20): 2715-2728. PubMed Citation: 9334333

Halachmi, N., et al. (1995). Rop and Ras2, members of the Sec1 and Ras families, are localized in the outer membranes of labyrinthine channels and vesicles of Drosophila nephrocyte, the garland cell. Eur. J. Cell Biol. 67: 275-283. PubMed Citation: 7588884

Halfar, K., et al. (2001). Ras controls growth, survival and differentiation in the Drosophila eye by different thresholds of MAP kinase activity. Development 128: 1687-1696. 11290305

Hamad, N. M., et al. (2002). Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16: 2045-2057. 12183360

Hamlet, M. R. J. and Perkins, L. A. (2001). Analysis of Corkscrew signaling in the Drosophila Epidermal growth factor receptor pathway during myogenesis. Genetics 159: 1073-1087. 11729154

Hannan, F., et al. (2006). Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Human Mol. Genet. 15(7): 1087-1098. 16513807

Hara, M., and Han, M. (1995). Ras farnesyltransferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 92: 3333-3337

Harden, N., et al. (1999). Participation of small GTPases in dorsal closure of the Drosophila embryo: distinct roles for Rho subfamily proteins in epithelial morphogenesis. J. Cell Sci. 112: 273-84

Hay, B. A., Maile, R. and Rubin, G. M. (1997). P element insertion-dependent gene activation in the Drosophila eye. Proc. Natl. Acad. Sci. 94(10): 5195-5200

Hayashi, T. and Saigo, K. (2001). Diversification of cell types in the Drosophila eye by differential expression of prepattern genes. Mech. Dev. 108: 13-27. 11578858

He, H., et al. (1998). Role of phosphatidylinositol 4,5-bisphosphate in Ras/Rac-induced disruption of the cortactin-actomyosin II complex and malignant transformation. Mol. Cell. Biol. 18(7): 3829-3837

Heberlein, U., Hariharan, I. K. and Rubin, G. M. (1993). Star is required for neuronal differentiation in the Drosophila retina and displays dosage-sensitive interactions with Ras1. Dev. Biol. 160: 51-63

Held, L. I., Jr. (2002). Bristles induce bracts via the EGFR pathway on Drosophila legs. Mech. Dev. 117: 225-234. 12204262

Henkemeyer, M., et al. (1995). Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377: 695-701

Heo, W. D. and Meyer, T. (2003). Switch-of-function mutants based on morphology classification of ras superfamily small GTPases. Cell 113: 315-328. 12732140

Herbst, R., et al. (1996). Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during Sevenless signaling. Cell 85(6): 899-909

Heumann, R., et al. (2000). Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J. Cell Biol. 151: 1537-1548. 11134081

Hidalgo, H., et al. (2001). The Drosophila neuregulin Vein maintains glial survival during axon guidance in the CNS. Developmental Cell 1: 679-690. 11709188

Hirabayashi, S., Baranski, T. J. and Cagan, R. L. (2013). Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154: 664-675. PubMed ID: 23911328

Hirabayashi, S. and Cagan, R. L. (2015). Salt-inducible kinases mediate nutrient-sensing to link dietary sugar and tumorigenesis in Drosophila. Elife 4. PubMed ID: 26573956

Holgado-Madruga, M., et al. (1997). Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc. Natl. Acad. Sci. 94(23): 12419-12424

Hooper, C., et al. (2007). Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur. J. Neurosci. 25: 81-86. PubMed Citation: 17241269

Hou, X. S., et al. (1995). The torso receptor tyrosine kinase can activate Raf in a Ras-independent pathway. Cell 81 (1): 63-71

Howard, R. M. and Sundaram, M. V. (2002). C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component. Genes Dev. 16: 1815-1827. 12130541

Hsu, T., McRackan, D., Vincent, T. S. and de Couet, H. G. (2001). Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nature Cell Biol. 3: 538-543. 11389437

Hu, K-Q. and Settleman, J. (1997). Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J. 16: 473-483

Huang, A. M. and Rubin, G. M. (2000). A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster. Genetics 156(3): 1219-30. 11063696

Ichise, T., Yoshida, N. and Ichise, H. (2010). H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 137(6): 1003-13. PubMed Citation: 20179099

Igaki, T., et al. (2006). Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr. Biol. 16: 1139-1146. 16753569

Innocenti, M., et al. (2002). Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J. Cell Biol. 156: 125-136. Medline abstract: 11777939

Iritani, B. M., et al. (1997). Control of B cell development by Ras-mediated activation of Raf. EMBO J. 16(23): 7019-7031

Ishimaru, S., et al. (1999). Activation of the Drosophila C3G leads to cell fate changes and overproliferation during development, mediated by the RAS-MAPK pathway and RAP1. EMBO J. 18: 145-155

Ito, Y., et al. (2006). Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep. 7(7): 704-9. PubMed Citation: 16799460

Iversen, L., Tu, H. L., Lin, W. C., Christensen, S. M., Abel, S. M., Iwig, J., Wu, H. J., Gureasko, J., Rhodes, C., Petit, R. S., Hansen, S. D., Thill, P., Yu, C. H., Stamou, D., Chakraborty, A. K., Kuriyan, J. and Groves, J. T. (2014). Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 345: 50-54. PubMed ID: 24994643

Jaffe, A. B., Aspenstrom, P. and Hall, A. (2004). Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol. Cell Biol. 24(4): 1736-46. 14749388

James, K. E., Dorman, J. B. and Berg, C. A. (2002). Mosaic analyses reveal the function of Drosophila Ras in embryonic dorsoventral patterning and dorsal follicle cell morphogenesis. Development 129: 2209-2222. 11959829

Jazwinska, A., Ribeiro, C. and Affolter, M. (2003). Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nat. Cell Biol. 5: 895-901. 12973360

Jezowska, B., Fernandez, B. G., Amandio, A. R., Duarte, P., Mendes, C., Bras-Pereira, C. and Janody, F. (2011). A dual function of Drosophila capping protein on DE-cadherin maintains epithelial integrity and prevents JNK-mediated apoptosis. Dev Biol 360: 143-159. Pubmed: 21963538

Jiang, Y., et al. (1998). The G protein G alpha12 stimulates Bruton's tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature 395(6704): 808-13. PubMed Citation: 9796816

Jiao, H., et al. (1998). Arachidonic acid mediates angiotensin II effects on p21ras in renal proximal tubular cells via the tyrosine kinase-Shc-Grb2-Sos pathway. Proc. Natl. Acad. Sci. 95(13): 7417-7421. PubMed Citation: 9636164

Johnson, C., Chun-Jen Lin, C. and Stern, M. (2012). Ras-dependent and Ras-independent effects of PI3K in Drosophila motor neurons. Genes Brain Behav. 11(7): 848-58. PubMed Citation: 22783951

Johnson, L., et al. (1997). K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11(19): 2468-2481

Joneson T., et al. (1998). Kinase suppressor of Ras inhibits the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase by growth factors, activated Ras, and Ras effectors. J. Biol. Chem. 273(13): 7743-7748

Jordan-Alvarez, S., Santana, E., Casas-Tinto, S., Acebes, A. and Ferrus, A. (2017). The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One (9): e0184238. PubMed ID: 28892511Jura, N., Scotto-Lavino, E., Sobczyk, A. and Bar-Sagi, D. (2006). Differential modification of Ras proteins by ubiquitination. Mol Cell 21: 679-687. PubMed ID: 16507365

Kang, J. S. and Krauss, R. S. (1996). Ras induces anchorage-independent growth by subverting multiple adhesion-regulated cell cycle events. Mol. Cell. Biol. 16: 3370-3380

Karim, F. and Rubin, G. (1998). Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 125(1): 1-9

Karlovich, C. A., et al. (1995). In vivo functional analysis of the Ras exchange factor son of sevenless. Science 268 (5210): 576-579

Kawada, M., et al. (1997). Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene 15(6): 629-637

Kawamori, H., Tai, M., Sato, M., Yasugi, T. and Tabata, T. (2011). Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev. Growth Differ. 53(5): 653-67. PubMed Citation: 21671914

Kayne, P. S. and Sternberg, P. W. (1995). Ras pathways in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 5: 38-43

Kelly, P. A. and Rahmani, Z. (2005). DYRK1A enhances the mitogen-activated protein kinase cascade in PC12 cells by forming a complex with Ras, B-Raf, and MEK1. Mol. Biol. Cell 16(8): 3562-73. 15917294

Kikuchi, A. and Williams, L. T. (1996). Regulation of interaction of ras p21 with RalGDS and Raf-1 by cyclic AMP-dependent protein kinase. J. Biol. Chem. 271: 588-594

Kim, H. A., et al. (1995). Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene 11: 325-335

Kim, J. H., et al. (1998). SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20(4): 683-691

Kim, M. J., et al. (2005). Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46: 745-760. 15924861

Kishida, S., et al. (1997). Colocalization of Ras and Ral on the membrane is required for Ras-dependent Ral activation through Ral GDP dissociation stimulator. Oncogene 15(24): 2899-907

King, A. J., et al. (1998). The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396(6707): 180-3

Kinoshita, T., et al. (1997). Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3-dependent hematopoietic cells. Oncogene 15(6): 619-627

Kockel, L., et al. (1997a). Requirement for Drosophila 14-3-3 eta in Raf-dependent photoreceptor development. Genes Dev. 11: 1140-47

Kockel, L., et al. (1997b). Jun in Drosophila development: redundant and nonredundant functions and regulation by two MAPK signal transduction pathways. Genes Dev. 11:1748-1758

Koera, K., et al. (1997). K-ras is essential for the development of the mouse embryo. Oncogene 15(10): 1151-1159

Koh, Y.-H., Ruiz-Canada, C., Gorczyca, M. and Budnik, V. (2002). The Ras1-Mitogen-activated protein kinase signal transduction pathway regulates synaptic plasticity through Fasciclin II-mediated cell adhesion. J. Neurosci. 22(7): 2496-2504. 11923414

Kornfeld, K., Hom, D. B. and Horvitz, H. R. (1995). The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83: 903-913

Kouhara, H., et al. (1997). A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89 (5): 693-702

Kranenburg, O., et al. (1997). Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J. 16(11): 3097-3105

Krapivinsky, G., et al. (2003). The NMDA receptor is coupled to the ERK Pathway by a direct interaction between NR2B and RasGRF1. Neuron 40: 775-784. 14622581

Kretzschmar, M., et al. (1999). A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 13(7): 804-816

Kulshammer, E., Mundorf, J., Kilinc, M., Frommolt, P., Wagle, P. and Uhlirova, M. (2015). Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech 8: 1279-1293. PubMed ID: 26398940

Kundra, B., et al. (1995). The chemotactic response to PDGF-BB: evidence of a role for Ras. J. Cell Biol. 130: 725-731

Kuo, W. L., Chung, K. C. and Rosner, M. R. (1997). Differentiation of central nervous system neuronal cells by fibroblast-derived growth factor requires at least two signaling pathways: roles for Ras and Src. Mol. Cell. Biol. 17: 4633-4643

Kurada, P. and White, K. (1998). Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95(3): 319-29

Kuriyama, M., et al. (1996). Identification of AF-6 and canoe as putative targets for Ras. J. Biol. Chem. 271(2): 607-610

Kurzik-Dumke, U., Phannavong, B., Gundacker, D. and Gateff, E. (1992). Genetic, cytogenetic and developmental analysis of the Drosophila melanogaster tumor suppressor gene lethal(2)tumorous imaginal discs (1(2)tid). Differentiation 51: 91-104. 1473626

Kurzik-Dumke, U., Gundacker, D., Renthrop, M. and Gateff, E. (1995). Tumor suppression in Drosophila is causally related to the function of the lethal(2) tumorous imaginal discs gene, a dnaJ homolog. Dev. Genet. 16: 64-76. 7758246

Kussick, S. J., Basler, K. and Cooper, J. A. (1993). Ras1-dependent signaling by ectopically-expressed Drosophila src gene product in the embryo and developing eye. Oncogene 8 (10): 2791-2803

Continued Ras85 References: part 2/3 | part 3/3

Ras85D: Biological Overview | Evolutionary Homologs | Regulation | Protein Interactions | Effects of Mutation

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.