cactus


DEVELOPMENTAL BIOLOGY

Effects of Mutation or Deletion

In addition to its function in embryonic development, Drosophila's NF-kappa B/rel-related gene dorsal (dl) is expressed in larval and adult fat body where its RNA expression is enhanced upon injury. Injury also leads to a rapid nuclear translocation of dl from the cytoplasm in fat body cells. The nuclear localization of dl during the immune response is controlled by the Toll signaling pathway, comprising gene products that participate in the intracellular part of the embryonic dorsoventral pathway. In mutants such as Toll or cactus, which exhibit melanotic tumor phenotypes, dl is constitutively nuclear. Together, these results point to a potential link between the Toll signaling pathway and melanotic tumor induction. The melanotic tumor phenotype of Toll and cactus is not dl dependent. These data underline the complexity of the Drosophila immune response (Lemaitre, 1995).

There are a number of different controls on the expression of the antifungal polypeptide gene drosomycin in adults: the receptor Toll, intracellular components of the dorsoventral signaling pathway (Tube, Pelle, and Cactus), and the extracellular Toll ligand, Spätzle, but not the NF-kappaB related transcription factor Dorsal. Mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. In Tl-deficient adults, the cecropin A and, to a lesser extent, attacin, drosomycin and defensin genes are only minimally inducible, in contrast with the diptericin and drosocin genes, which remain fully inducible in this context. The drosomycin gene induction is not affected in mutants deficient in gastrulation defective, snake and easter, all upstream of spätzle in the dorsoventral pathway. The involvement of Spätzle in the drosomycin induction pathway is unexpected, since, in contrast with cat, pll, tub, and Tl, the spz mutant shows no striking zygotic phenotype. The partner of Cact in the drosomycin induction pathway has not yet been identified, but it is probably a member of the Rel family, possibly Dorsal-related immunity factor (Lemaitre, 1996).

hindsight expression in the amnioserosa is regulated by the dorsoventral pathway. Dorsal Hnt protein expression is reduced in genetically ventralized mutant embryos such as those produced by saxophone or cactus females. Reciprocally, dorsal Hnt expression expands ventrally in dorsalized embryos. Anterior midgut expression of Hnt is also affected by the dorsoventral pathway (Yip, 1997).

There are two distinct regulatory pathways controlling the expression of antimicrobial genes, the dorsoventral pathway and the immune deficiency (imd) gene. In contrast to the results with drosomycin, antibacterial genes, cecropin A1, diptericin, drosocin, attacin, and defensin do not give strong constitutive expression in dorsoventral pathway mutants. However, the level of constitutive expression of anti-bacterial genes in dorsoventral pathway mutants is higher than the basal level, and induction of Cecropin A genes is 4-fold lower in dorsoventral pathway mutants. The transcription of cact, dorsal, dif, pll, tub, Tl and spz genes, but not tub, are clearly up-regulated in response to immune challenge. Even though the same components of the dorsoventral pathway that are involved in antifungal response are also involved in antibacterial response, there is an additional requirement for the as yet uncloned imd gene product (Lemaitre, 1996).


REFERENCES

Akiba H., et al. (1998). CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J. Biol. Chem. 273(21): 13353-8.

Aoki, T., et al. (1996). The ankyrin repeats but not the PEST-like sequences are required for signal-dependent degradation of IkappaBalpha. Oncogene 12: 1159-1164

Armstrong, N. J., et al. (1998). Conserved Spatzle/Toll signaling in dorsoventral patterning of Xenopus embryos. Mech. Dev. 71(1-2): 99-105.

Attar, R. M., et al. (1998). Expression of constitutively active IkappaB beta in T cells of transgenic mice: persistent NF-kappaB activity is required for T-cell immune responses. Mol. Cell. Biol. 18(1): 477-487.

Auphan, N., et al. (1995). Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270: 286-290

Baud, V., et al. (1999). Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13(10): 1297-308.

Belvin, M. P., Jin, Y, and Anderson, K. V. (1995). Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev 9: 783-793

Beraud, C., Henzel, W. J. and Baeuerle, P. A. (1999). Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Proc. Natl. Acad. Sci. 96(2): 429-34.

Bergmann, A., et al. (1996). A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech. Dev. 60: 109-123.

Cai, D., et al. (2004). IKKß/NF-kappaB activation causes severe muscle wasting in mice. Cell 119: 285-298. 15479644

Cantera, R., Kozlova, T. Barillas-Mury, C. and Kafatos, F. C. (1999) Muscles and innveravtion are affected by loss of Dorsal in the fruit fly, Drosophila melanogaster. Mol. Cell. Neurosci. 13: 131-141. Medline abstract: 10192771

Carneiro, K., et al. (2006). Graded maternal Short gastrulation protein contributes to embryonic dorsal-ventral patterning by delayed induction. Dev. Biol. 296(1): 203-18. 16781701

Cao, Y., et al. (2001). IKKalpha provides an essential link between RANK signaling and Cyclin D1 expression during mammary gland development. Cell 107: 763-775. 11747812

Cheshire, J. L. and Baldwin, A. S. (1997). Synergistic activation of NF-kappaB by tumor necrosis factor alpha and gamma interferon via enhanced I kappaB alpha degradation and de novo I kappaBbeta degradation. Mol. Cell. Biol. 17(11): 6746-6754.

Cohen, L., Henzel, W. J. and Baeuerle, P. A. (1998). IKAP is a scaffold protein of the IkappaB kinase complex. Nature 395(6699): 292-6.

Crepieux, P., et al. (1997). I kappaB alpha physically interacts with a cytoskeleton-associated protein through its signal response domain. Mol. Cell. Biol. 17(12): 7375-7385.

Cuervo, A. M., et al. (1998). IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol. Biol. Cell 9(8): 1995-2010.

Darnay, B. G., et al. (1999). Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J. Biol. Chem. 274(12): 7724-31.

da Fonseca, R. N., et al. (2008). Self-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum. Dev. Cell 14: 605-615. PubMed Citation: 18410735

De Gregorio, E., Spellman, P. T., Rubin, G. M., and Lemaitre, B. (2001). Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. 98: 12590-12595. 11606746

Delhase, M., et al. (1999). Positive and negative regulation of IotakappaBeta kinase activity through IKKbeta subunit phosphorylation. Science 284(5412): 309-313

Deng, L., et al. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2): 351-361. 11057907

Desterro, J. M., Rodriguez, M. S. and Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2: 233-239. 9734360

Espinosa, L., Bigas, A. and Mulero, M. C. (2014). Novel functions of chromatin-bound IkappaBalpha in oncogenic transformation. Br J Cancer [Epub ahead of print]. PubMed ID: 25233399

Fenwick, C. et al. (2000). A subclass of Ras proteins that regulate the degradation of IkappaB. Science 87: 869-873.

Fernandez, N. Q., et al. (2001). Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128: 2963-2974. 11532919

Fiorini, E., et al. (2002). Peptide-induced negative selection of thymocytes activates transcription of an NF-kappaB inhibitor. Molec. Cell 9: 637-648. 11931770

Gao, Z., et al. (2005). Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J. Biol. Chem. 280(22): 21091-8. Medline abstract: 15811852

Gay, N. J. and Ntwasa, M. (1993). The Drosophila ankyrin repeat protein cactus has a predominantly alpha-helical secondary structure. FEBS Lett 335: 155-60

Geisler, R., et al. (1992). cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the I kappa B gene family of vertebrates. Cell 71: 613-21

Ghoda, L., Lin, X. and Greene, W. C. (1997). The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro. J. Biol. Chem. 272(34): 21281-21288.

Gillespie, S. K. and Wasserman, S. A. (1994). Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol Cell Biol 14: 3559-68

Govind, S., Brennan, L. and Steward, R. (1993). Homeostatic balance between dorsal and cactus proteins in the Drosophila embryo. Development 117: 135-48

Greten, F. R., et al. (2007). NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130(5): 918-31. Medline abstract: 17803913

Hatakeyama, S., et al. (1999). Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc. Natl. Acad. Sci. 96(7): 3859-63.

Hattori, K., et al. (1999). Molecular dissection of the interactions among IkappaBalpha, FWD1, and Skp1 required for ubiquitin-mediated proteolysis of IkappaBalpha. J. Biol. Chem. 274(42): 29641-7.

Heckscher, E. S., et al. (2007). NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ. Neuron 55: 859-873. Medline abstract: 17880891

Hirano, F., et al. (1998). Alternative splicing variants of IkappaB beta establish differential NF-kappaB signal responsiveness in human cells. Mol. Cell. Biol. 18(5): 2596-2607.

Hu, Y., et al. (1999). Abnormal Morphogenesis But Intact IKK Activation in Mice Lacking the IKKalpha Subunit of IkappaB Kinase. Science 284(5412): 316-320

Huang, T. T., et al. (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115: 565-576. 14651848

Huxford, T., et al. (1998). The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95(6): 759-70.

Isoda, K. and Nusslein-Volhard, C. (1994). Disulfide cross-linking in crude embryonic lysates reveals three complexes of the Drosophila morphogen dorsal and its inhibitor cactus. Proc. Natl. Acad. Sci. 91: 5350-4

Jacobs, M. D. and Harrison, S. C. (1998). Structure of an IkappaBalpha/NF-kappaB complex. Cell 95(6): 749-58.

Kane, L. P., et al. (1999). Induction of NF-kappaB by the Akt/PKB kinase. Curr. Biol. 9: 601-604.

Kato, T., et al. (2003). CK2 is a c-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Molec. Cell 12: 829-839. 14580335

Kidd, S. (1992). Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 71: 623-635

Kim, Y. S., et al. (2000). Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J. Biol. Chem. 275(3): 2071-2079.

Klement, J. F., et al. (1996). IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol. Cell. Biol. 16: 2341-2349

Klug, C. A., et al. (1994). The v-abl tyrosine kinase negatively regulates NF-kappa B/Rel factors and blocks kappa gene transcription in pre-B lymphocytes. Genes Dev 8: 678-687.

Kralova, J., et al. (1996). Synergistic stimulation of avian IkappaBalpha transcription by rel and fos/jun factors. Oncogene 12: 2595-2604

Kroll, M., et al. (1997). The carboxy-terminus of I kappaB alpha determines susceptibility to degradation by the catalytic core of the proteasome. Oncogene 15(15): 1841-1850.

Kubota, K., Keith, F. J. and Gay, N. J. (1993). Relocalization of Drosophila dorsal protein can be induced by a rise in cytoplasmic calcium concentration and the expression of constitutively active but not wild-type Toll receptors. Biochem J 296 ( Pt 2): 497-503

Kubota, K. and Gay, N. J. (1995a). Calcium destabilises Drosophila cactus protein and dephosphorylates the dorsal transcription factor. Biochem Biophys Res Commun 214: 1191-1196

Kubota, K. and Gay, N. J. (1995b). The dorsal protein enhances the biosynthesis and stability of the Drosophila I kappa B homologue cactus. Nucleic Acids Res 23: 3111-3118

Lallena, M. J., et al. (1999). Activation of IkappaB kinase beta by protein kinase C isoforms. Mol. Cell. Biol. 19(3): 2180-8.

Latimer M., et al. (1998). The N-terminal domain of IkappaB alpha masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol. Cell. Biol. 18(5): 2640-2649.

Lee, F. S., et al. (1998). MEKK1 activates both IkappaB kinase alpha and IkappaB kinase beta. Proc. Natl. Acad. Sci. 95(16): 9319-9324.

Li, Q., et al. (1999a). Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284(5412): 321-325

Li, Q., et al. (1999b). IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13(10): 1322-8.

Lin, P.-H., Huang, L. H, and Steward, R. (2000). Cactin, a conserved protein that interacts with the Drosophila IkappaB protein Cactus and modulates its function. Mech. Dev. 94: 57-65

Lin, R., et al. (1996). Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol. Cell. Biol. 16(4): 1401-1409.

Lin, X., et al. (1998). Molecular determinants of NF-kappaB-inducing kinase action. Mol. Cell. Biol. 18(10): 5899-5907.

Liu, Z. P., Galindo, R. L. and Wasserman, S. A. (1997). A role for CKII phosphorylation of the Cactus PEST domain in dorsoventral patterning of the Drosophila embryo. Genes Dev. 11(24): 3413-3422

Liu, L., et al. (1998). DNA-dependent protein kinase phosphorylation of IkappaB alpha and IkappaB beta regulates NF-kappaB DNA binding properties. Mol. Cell. Biol. 18(7): 4221-4234.

Lehming, N., et al. (1995). Interactions of a Rel protein with its inhibitor. Proc Natl Acad Sci 92: 10242-10246

Lemaitre, B., et al. (1995). Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J 14: 536-545

Lemaitre, B., et al. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983

Luecke, H. F. and Yamamoto, K. R. (2005). The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression. Genes Dev. 19(9): 1116-27. 15879558

Luque, I. and Gelinas, C. (1998). Distinct domains of IkappaBalpha regulate c-Rel in the cytoplasm and in the nucleus. Mol. Cell. Biol. 18(3): 1213-1224.

McKinsey, T. A., et al. (1996). Inactivation of IkappaBbeta by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-kappaB. Mol. Cell. Biol. 16: 2083-2090

Oeth, P. and Mackman, N. (1995). Salicylates inhibit lipopolysaccharide-induced transcriptional activation of the tissue factor gene in human monocytic cells. Blood 86: 4144-4152

McKinsey, T. A., Chu, Z. L. and Ballard, D. W. (1997). Phosphorylation of the PEST domain of IkappaBbeta regulates the function of NF-kappaB/IkappaBbeta complexes. J. Biol. Chem. 272(36): 22377-22380.

Mercurio, F., et al. (1997). IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278(5339): 860-866.

Mercurio, F., et al. (1999). IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19(2): 1526-38.

Muzio M., et al. (1998). The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187(12): 2097-101.

Nagata, R., Akai, N., Kondo, S., Saito, K., Ohsawa, S. and Igaki, T. (2022). Yorkie drives supercompetition by non-autonomous induction of autophagy via bantam microRNA in Drosophila. Curr Biol 32(5): 1064-1076. PubMed ID: 35134324

Nakano, H., et al. (1998). Differential regulation of IkappaB kinase and by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl. Acad. Sci. 95(7): 3537-3542.

Nemoto, S, DiDonato, J. A. and Lin, A. (1998). Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinase. Mol. Cell. Biol. 18(12): 7336-7343.

Nicolas, E., et al. (1998). In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273(17): 10463-10469.

Ninomiya-Tsuji, J., et al. (1998). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724): 252-6.

Ninomiya-Tsuji, J., et al. (1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724): 252-6.

Ooi, J. Y., Yagi, Y., Hu, X. and Ip, Y. T. (2002). The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3: 82-87. 11751574

Paddibhatla, I., Lee, M. J., Kalamarz, M. E., Ferrarese, R. and Govind, S. (2010). Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae. PLoS Pathog. 6(12): e1001234. PubMed Citation: 21203476

Perona, R., et al. (1997). Activation of the nuclear factor-KB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 11: 463-475

Peters, R. T., Liao, S.-M. and Maniatis, T. (2000). IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex. Molec. Cell 5: 513-522

Pomerantz, J. L. and Baltimore, D. (1999). NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18: 6694-6704.

Qiu, P. Pan, P. C. and Govind, S. (1998). A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125(10): 1909-1920.

Ran, R., et al. (2004). Hsp70 promotes TNF-mediated apoptosis by binding IKKgamma and impairing NF-kappaB survival signaling. Genes Dev. 18: 1466-1481. 15198984

Ray, P., et al. (1995). Cloning of a differentially expressed I kappa B-related protein. J Biol Chem 270: 10680-10685

Reach, M., et al. (1996). A gradient of Cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev. Biol. 180: 353-364

Regnier, C. H., et al. (1997). Identification and characterization of an IkappaB kinase. Cell 90(2): 373-383.

Rothwarf, D. M., et al. (1998). IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395(6699): 297-300.

Rupec, R. A., et al. (2005). Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 22(4): 479-91. PubMed citation: 15845452

Sachdev, S., Hoffmann, A. and Hannink, M. (1998a). Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol. Cell. Biol.18(5): 2524-2534.

Sachdev, S. and Hannink, M. (1998b). Loss of IkappaB alpha-mediated control over nuclear import and DNA binding enables oncogenic activation of c-Rel. Mol. Cell. Biol. 18(9): 5445-56.

Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T., and Moscat, J. (1999). The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J. 18: 3044-3053. 10356400

Scheinman, R. I., et al. (1995). Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270: 283-286

Schmidt, C., et al. (2003). Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Molec. Cell 12: 1287-1300. 14636585

Silverman, N., et al. (2003). Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J. Biol. Chem. 278: 48928-48934. 14519762

Simeonidis S., et al. (1999). Mechanisms by which IkappaB proteins control NF-kappaB activity. Proc. Natl. Acad. Sci. 96(1): 49-54.

Song, H.Y., et al. (1997). Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl. Acad. Sci. 94(18): 9792-6.

Spencer, E., Jiang, J. and Chen, Z. J. (1999). Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev. 13(3): 284-94.

Stuhlmeier, K. M., Kao, J. J. and Bach, F. H. (1997). Arachidonic acid influences proinflammatory gene induction by stabilizing the inhibitor-kappaBalpha/Nuclear factor-kappaB (NF-kappaB) complex, thus suppressing the nuclear translocation of NF-kappaB. J. Biol. Chem. 272(39): 24679-24683.

Su, F. and Schneider, R. J. (1996). Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J. Virol. 70: 4558-4566

Takeda, K., et al. (1999). Limb and skin abnormalities in mice lacking IKKalpha. Science 284(5412): 313-316

Tang, G., et al. (2001). Blocking Caspase-3-mediated proteolysis of IKKß suppresses TNF-alpha-induced apoptosis. Molec. Cell 8: 1005-1016. 11741536

Tatei, K. and Levine, M. (1995). Specificity of Rel-inhibitor interactions in Drosophila embryos. Mol Cell Biol 15: 3627-3634

Tran, K., Merika, M. and Thanos, D. (1997). Distinct functional properties of IkappaB alpha and IkappaB beta. Mol. Cell. Biol. 17(9): 5386-5399.

Wang, C., et al. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346-351. 11460167

Werner, S. L., et al. (2008). Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. Genes Dev. 22(15): 2093-101. PubMed Citation: 18676814

Whalen, A. M. and Steward, R. (1993). Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal. J Cell Biol 123: 523-34

Winston, J. T., et al. (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 13(3): 270-83.

Woronicz, J. D., et al. (1997). IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278(5339): 866-869.

Wu, L. P. and Anderson, K. V. (1998). Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392(6671): 93-97.

Yaron, A., et al. (1997). Inhibition of NF-kappaB cellular function via specific targeting of the IkappaB-ubiquitin ligase. EMBO J. 16(21): 6486-6494.

Yaron, A., et al. (1998). Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396(6711): 590-4.

Yin, M. J., Yamamoto, Y. and Gaynor, R. B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396(6706): 77-80.

Yip, M.L, Lamka, M. L. and Lipshitz, H. D. (1997). Control of germ-band retraction in Drosophila by the zinc-finger protein HINDSIGHT. Development 124 (11): 2129-2141.

Zandi, E., et al. (1997). The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91: 243-252.


cactus: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation

date revised: 15 October 2011

 

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.