InteractiveFly: GeneBrief

PHD finger protein 7 ortholog : Biological Overview | References

Gene name - PHD finger protein 7 ortholog

Synonyms -

Cytological map position - 19B3-19C1

Function - chromatin factor

Keywords - spermatogenesis, histone code reader

Symbol - Phf7

FlyBase ID: FBgn0031091

Genetic map position - chrX:20054423-20059911

Classification - PHD-like zinc-binding domain

Cellular location - nuclear

NCBI links: Precomputed BLAST | EntrezGene
Recent literature
Wang, X. R., Ling, L. B., Huang, H. H., Lin, J. J., Fugmann, S. D. and Yang, S. Y. (2017). Evidence for parallel evolution of a gene involved in the regulation of spermatogenesis. Proc Biol Sci 284(1855). PubMed ID: 28539513
PHD finger protein 7 (Phf7) is a male germline specific gene in Drosophila melanogaster that can trigger the male germline sexual fate and regulate spermatogenesis, and its human homologue can rescue fecundity defects in male flies lacking this gene. These findings prompted an investigation of conservation of reproductive strategies through studying the evolutionary origin of this gene. Phf7 was found to be present only in select species including mammals and some insects, whereas the closely related G2/M-phase specific E3 ubiquitin protein ligase (G2e3) is in the genome of most metazoans. Interestingly, phylogenetic analyses showed that vertebrate and insect Phf7 genes did not evolve from a common Phf7 ancestor but rather through independent duplication events from an ancestral G2e3. This is an example of parallel evolution in which a male germline factor evolved at least twice from a pre-existing template to develop new regulatory mechanisms of spermatogenesis.
Yang, S. Y., Chang, Y. C., Wan, Y. H., Whitworth, C., Baxter, E. M., Primus, S., Pi, H. and Van Doren, M. (2017). Control of a novel spermatocyte-promoting factor by the male germline sex determination factor PHF7 of Drosophila melanogaster. Genetics [Epub ahead of print]. PubMed ID: 28588035
A key aspect of germ cell development is to establish germline sexual identity and initiate a sex-specific developmental program to promote spermatogenesis or oogenesis. The histone reader Plant Homeodomain Finger 7 (PHF7) has been identified as an important regulator of male germline identity. To understand how PHF7 directs sexual differentiation of the male germline, this study investigated the downstream targets of PHF7 by combining transcriptome analyses, which reveal genes regulated by Phf7, with genomic profiling of histone H3K4me2, the chromatin mark that is bound by PHF7. Through these genomic experiments, a novel spermatocyte factor Receptor Accessory Protein Like 1 (REEPL1) was identified that can promote spermatogenesis and whose expression is kept off by PHF7 in the spermatogonial stage. Loss of Reepl1 significantly rescues the spermatogenesis defects in Phf7 mutants, indicating that regulation of Reepl1 is an essential aspect of PHF7 function. Further, increasing REEPL1 expression facilitates spermatogenic differentiation. These results indicate that PHF7 controls spermatogenesis by regulating the expression patterns of important male germline genes.

Establishment of germline sexual identity is critical for production of male and female germline stem cells, as well as sperm versus eggs. This study identified PHD Finger Protein 7 (PHF7) as an important factor for male germline sexual identity in Drosophila. PHF7 exhibits male-specific expression in early germ cells, germline stem cells, and spermatogonia. It is important for germline stem cell maintenance and gametogenesis in males, whereas ectopic expression in female germ cells ablates the germline. Strikingly, expression of PHF7 promotes spermatogenesis in XX germ cells when they are present in a male soma. PHF7 homologs are also specifically expressed in the mammalian testis, and human PHF7 rescues Drosophila Phf7 mutants. PHF7 associates with chromatin, and both the human and fly proteins bind histone H3 N-terminal tails with a preference for dimethyl lysine 4 (H3K4me2). It is proposed that PHF7 acts as a conserved epigenetic 'reader' that activates the male germline sexual program (Yang, 2012).

Sex determination is key to sexual reproduction, and both somatic cells and germ cells need to establish sex-specific developmental fates. Germline sexual development is essential for the production of two distinct gametes, and underlies important differences in the regulation of male versus female fertility. In some species, germline stem cells are present in both males and females to sustain constant gamete production, but are regulated differently throughout development. In other species such as humans, sex-specific germ cell development produces a germline stem cell population only in males, whereas females have a much more limited capacity in making eggs. Defects in germline sexual development lead to a failure in gametogenesis, thus the study of germline sex determination is essential for understanding normal reproductive potential and treating infertility (Yang, 2012).

In some animals, such as mammals and Drosophila, the sex chromosome compositions of the soma and germline are interpreted independently, and the 'sex' of the germline must match that of the soma for proper germ cell development to occur. For example, patients with Klinefelter's Syndrome have an XXY sex chromosome constitution and are almost always infertile. These individuals develop somatically as males due to the presence of a Y chromosome but the germline suffers from severe atrophy, including the loss of premeiotic germline and germline stem cells. This is due to the presence of two X chromosomes in the germ cells, as the limited spermatogenesis in these patients is from germ cells that have lost one of the X chromosomes. In Drosophila, XX females that are somatically transformed into males exhibit a similar germline loss due to a conflict in sexual identity between the masculinized soma and XX germline. Thus, fruit flies are a valuable model organism for studying how germ cells establish a proper sexual identity by coordinating intrinsic signals and those coming from the soma (Yang, 2012).

In Drosophila, the presence of two X chromosomes promotes female somatic identity by activating an alternative splicing cascade that acts through Sex lethal (SXL) and Transformer (TRA), and ultimately leads to production of either the male or female forms of the transcription factors Doublesex (DSX) and Fruitless (FRU). DSX and FRU are responsible for virtually all sexually dimorphic somatic traits in Drosophila, with DSX being the key factor in the somatic gonad. In contrast, the germline does not determine its sex with this cascade and factors like TRA and DSX are not required in germ cells. Although SXL is required to promote female germ cell identity, its targets and mechanism of action in the germline are not known. The transcription factor OVO and the ubiquitin protease Ovarian Tumor (OTU) are also required in the female germline and thought to function upstream of SXL. Even less is known about how sexual identity is specified in male germ cells. Male germ cells receive a signal through the JAK/STAT pathway that promotes their sexual identity, but the downstream factors that are subsequently activated are not known. Similarly, how male germ cells respond to their own sex chromosome constitution is also not known (Yang, 2012).

This study reports a histone code reader, Plant Homeodomain (PHD) Finger 7 (PHF7), that acts in the Drosophila germline to promote male sexual identity. PHF7 is specifically expressed in male germ cells from early stages of development and is restricted to male germline stem cells (GSCs) and spermatogonia. Phf7 is required for GSC maintenance and proper entry into spermatogenesis. Interestingly, expression of Phf7 in female germ cells causes ablation of the female germline. Moreover, Phf7 affects sexual compatibility between germline and soma. Loss of Phf7 in XY germ cells alleviates the germline loss typically observed when XY germ cells are surrounded by a female soma, and expression of Phf7 can induce spermatogenesis in XX germ cells nurtured by male soma. These findings indicate that Phf7 is an essential factor in determining sexual development in the Drosophila germline, and suggest that activation of the male identity occurs through interaction with the germline epigenome (Yang, 2012).

The data indicate that Phf7 acts to promote a male identity in the germline. Loss of Phf7 function affected male GSC maintenance and spermatogenesis, but had no effect in females. Phf7-mutant GSCs exhibited a more female-like pattern of spectrosome localization, and male (XY) germ cells mutant for Phf7 were more compatible with a female soma than were wild-type male germ cells. Further, expression of PHF7 was able to masculinize the female germline: PHF7 expression induced apoptosis in developing XX germ cells and interacted with mutations in otu in a manner that indicates XX germ cells that express PHF7 are more male-like. Strikingly, PHF7 expression was able to induce spermatogenesis in XX germ cells when they are present in a male soma, something that XX germ cells are normally not able to do. Taken together, these results indicate that Phf7 promotes and is sufficient to induce male identity in the germline (Yang, 2012).

Sex determination is thought to be initiated early during development, and sex-specific differences in the male and female germline are first observed during embryogenesis. The data indicate that Phf7 plays a role in early germline sexual development, rather than a late role to regulate germ cell differentiation and gametogenesis. First, PHF7 expression is observed in the embryonic gonad and, in the adult, PHF7 is found in the GSCs and early gonia and disappears dramatically as gonia transition to spermatocytes. Further, forced PHF7 expression disrupts early female germ cell development, around the time when they are first forming GSCs. Expression of PHF7 after the early cystoblast stage (Bam-Gal4, UAS-Gal4) had no effect on the female germline, indicating that it can only affect early stages of female germ cell development. Phf7 mutants show defects in male GSC behavior and maintenance, and in the initial progression to form spermatocytes, but it is possible that these defects are due to even earlier problems in male sexual identity (Yang, 2012).

Germline sexual identity is determined by both the germ cell sex chromosome constitution and signals from the surrounding soma. Phf7 expression is activated in XX germ cells when in contact with a male soma and repressed in XY germ cells when contacting a female soma. However, in a female somatic environment, XY germ cells are somewhat more likely than XX germ cells to express Phf7, indicating that Phf7 may also respond to the sex chromosome constitution of the germ cells in addition to being regulated by the soma. Further, exogenous expression of Phf7 is required to promote spermatogenesis in XX germ cells when in a male soma. Thus, the Phf7 expression that is normally initiated in such germ cells by the male soma must either not be maintained, or may be insufficient to overcome the influence of the XX sex chromosome genotype (Yang, 2012).

It is likely that Phf7 is not acting alone to control male sexual identity. Phf7 mutant males are still able to undergo spermatogenesis, but at a much reduced capacity. This appears to be the null phenotype for Phf7 as ther mutants have lost significant portions of the coding sequence. Further, when PHF7 is expressed in XX germ cells present in a male soma, these germ cells can undergo spermatogenesis, but the penetrance of this phenotype is low. Interestingly, the rescue of spermatogenesis in these XX germ cells follows an 'all or nothing' pattern; either the rescue is largely complete to give full testes and sperm production, or little rescue is observed. Therefore, there appears to be a threshold that must be crossed to promote male germline sexual identity, and that once this threshold is met, those germ cells either take over the testis, or induce other germ cells to also follow the male pathway. The simplest explanation for both the incomplete block to spermatogenesis in Phf7 mutants and the incomplete rescue of spermatogenesis by Phf7 in XX males is that an additional factor (or factors) exists that promotes male identity in addition to Phf7. Such a factor could function parallel to Phf7 in a single pathway, or represent independent input regarding germline sex determination (e.g., independent signals from the soma that influence germline sex) (Yang, 2012).

PHD fingers, such as those found in PHF7, are best known for their ability to specifically bind histones that have been modified on their N-terminal tails, in particular methylated H3K4. This study shows that both Drosophila and human PHF7 can directly associate with dimethylated H3K4, indicating that PHF7 is indeed a histone code reader. It is uncommon for PHD domains to associate preferentially with H3K4me2 over H3K4me3, but this specificity has been observed previously, and is likely important for how PHF7 modulates expression of its targets. Both di- and trimethylated H3K4 are found at actively transcribed genes, but H3K4me2 is normally localized at the 5′ end of coding sequences, downstream of H3K4me3, which is near promoters. The two marks are also regulated by different demethylases. A few recent studies have started to dissect effects of H3K4me2 on gene transcription, but the exact mechanisms are not well understood. Some PHD finger proteins also contain other domains, such as those that modify histones enzymatically. This does not appear to be the case for PHF7, and the region of homology between PHF7 homologs of different species is restricted to the PHD domains. However, individual PHD fingers can bind modified histone tails independently, and it is yet unclear which PHD finger in PHF7 contacts H3K4me2 and what activities the others might have. The logic of how PHF7 is recruited to specific loci and affects chromatin structure and gene activity are interesting questions for future work (Yang, 2012).

Another point of interest is how a reader of such a common epigenetic mark would have a sex-specific role in regulating male germline identity. It has been observed that mutation of an H3K4me2 demethylase in Caenorhabditis elegans, which leads to increased dimethylation at H3K4, results in ectopic activation of male-specific germline genes (Katz, 2009). A similar mutation in Drosophila causes female germline developmental defects (Szabad, 1988), which may be related to the germline atrophy observed when PHF7 expression was upregulated in female germ cells. These data are consistent with the hypothesis that H3K4me2 has a role in regulating the male germline genome. Interestingly, another germline chromatin factor, No child left behind (NCLB), has been identifed that is expressed in germ cells of both sexes but required for GSC function only in males (Casper, 2011). Thus, NCLB may cooperate with PHF7 in regulating the male GSC transcriptional program (Yang, 2012).

Based on sequence homology, orthologs of Phf7 are present in a wide range of mammalian species. Human and mouse PHF7 share extensive homology to Drosophila PHF7 throughout the N-terminus where the PHD fingers are present, and the results confirm that human PHF7 recognizes H3K4me2, similar to the fly protein. Interestingly, EST profiling indicates strong testis biases for Phf7 expression in many species, including humans, mice, rats, and dogs. Moreover, several studies that performed genome-wide RNA profiling from purified mouse germline populations indicate that mouse Phf7 expression is present in spermatogonia and is further induced in spermatocytes. Remarkably, human PHF7 was able to rescue fecundity defects in male flies mutant for Phf7. Thus, the sequence conservation observed between mammalian and Drosophila Phf7 represents true functional orthology (Yang, 2012).

As in Drosophila, germline sex determination in mouse is regulated at an early stage and is controlled by important signals from the soma, which for the mouse include retinoic acid and FGF9. Such signals regulate the timing of meiotic entry, which is different between the sexes, and also influence sex-specific programs of germline gene expression, such as expression of the key male-specific factor nanos2. Significant changes in germ cell chromatin occur during this critical time in germ cell development, including changes in the H3K4 methylation state. Thus, Phf7 represents a prime candidate for interpreting these chromatin changes in a sex-specific manner to regulate male-specific gene expression. It will be of great interest to determine whether Phf7 plays a critical role in mouse and human male germ cell development, as is proposed for Drosophila (Yang, 2012).


Search PubMed for articles about Drosophila Phf7

Casper, A. L., Baxter, K. and Van Doren, M. (2011). no child left behind encodes a novel chromatin factor required for germline stem cell maintenance in males but not females. Development 138: 3357-3366. PubMed ID: 21752937

Katz, D. J., Edwards, T. M., Reinke, V. and Kelly, W. G. (2009). A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137: 308-320. PubMed ID: 19379696

Szabad, J., Reuter, G. and Schroder, M. B. (1988). The effects of two mutations connected with chromatin functions on female germ-line cells of Drosophila. Mol Gen Genet 211: 56-62. PubMed ID: 3422705

Yang, S. Y., Baxter, E. M. and Van Doren, M. (2012). Phf7 controls male sex determination in the Drosophila germline. Dev Cell 22: 1041-1051. PubMed ID: 22595675

Biological Overview

date revised: 12 March 2013

Home page: The Interactive Fly © 2011 Thomas Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.