InteractiveFly: GeneBrief

Magi: Biological Overview | References

Gene name - Magi

Synonyms -

Cytological map position - 57C2-57C3

Function - signaling

Keywords - adherens junction - forms a complex with the polarity proteins Par3/Bazooka and aPKC, eye

Symbol - Magi

FlyBase ID: FBgn0034590

Genetic map position - chr2R:21,129,463-21,141,964

NCBI classification - WW domain; PDZ domain; WD40/YVTN repeat-like-containing domain

Cellular location - cytoplasmic

NCBI link: EntrezGene

The mammalian MAGI proteins play important roles in the maintenance of adherens and tight junctions. The MAGI family of proteins contains modular domains such as WW and PDZ domains necessary for scaffolding of membrane receptors and intracellular signaling components. Loss of MAGI leads to reduced junction stability while overexpression of MAGI can lead to increased adhesion and stabilization of epithelial morphology. However, how Magi regulates junction assembly in epithelia is largely unknown. This study investigated the single Drosophila homologue of Magi to study the in vivo role of Magi in epithelial development. Magi is localized at the adherens junction and forms a complex with the polarity proteins, Par3/Bazooka and aPKC. A Magi null mutant was generated and found to be viable with no detectable morphological defects even though the Magi protein is highly conserved with vertebrate Magi homologues. However, overexpression of Magi results in the displacement of Baz/Par3 and aPKC and leads to an increase in the level of PIP3. Interestingly, it was found that Magi and Baz function in an antagonistic manner to regulate the localization of the apical polarity complex. Maintaining the balance between the level of Magi and Baz is an important determinant of the levels and localization of apical polarity complex (Padash Barmchi, 2016a).

A common component of junctional and polarity complexes is modular scaffolding proteins that are capable of binding to each other as well as recruiting other proteins to the complex. Magi proteins are evolutionarily conserved scaffolding proteins and contain multiple domains including a N-terminal catalytically inactive GUK domain, two WW domains and five to six PDZ (PSD95/Dlg/ZO-1) domains (Dobrosotskaya, 1997). There are three MAGI proteins in vertebrates (MAGI-1,2,3) all with multiple splice isoforms. MAGI-1 and MAGI-3 are relatively ubiquitously expressed and localize to a range of junctions including epithelial tight junctions. MAGI-2 (also known as AIP1/S-SCAM/ARIP1) is expressed in the nervous system as a synaptic protein and within glomerular podocytes in the kidney and plays important role in scaffolding synaptic proteins such as NMDA receptors and Neuroligin, the tip-link protocadherin Cadherin23, the Kir4.1 K(+) channel, as well as kidney proteins such as nephrin and JAM4 (Padash Barmchi, 2016a).

Within epithelia and endothelia, MAGI-1 and -3 are localized at tight junctions and form a structural scaffold for the assembly of junctional complexes. MAGI-1 also localizes and plays a role in modulating adherens junction adhesion through scaffolding beta-catenin and PTEN. MAGI-1 overexpression stabilizes adherens junctions and epithelial cell morphology through increased E-cadherin and β-catenin recruitment (Zaric, 2012). Silencing of MAGI-1 has the opposite effect with decreased adherens junction adhesion and reduced focal adhesion formation leading to anchorage-independent growth and migration in vitro. MAGI-1 overexpression suppresses the invasiveness of MDCK cells, as well as suppresses tumor growth and spontaneous lung metastasis through the increased recruitment of PTEN or β-catenin and E-cadherin (Padash Barmchi, 2016a).

Overall, MAGI proteins play important roles in the stabilization of cell-cell interactions and as such Magi is a key target in polarized epithelia during cell death and viral infection. For instance, MAGI-1 is cleaved by activated caspases during apoptosis, a process thought to mediate the disassembly of cell-cell contacts (Gregorc, 2007). MAGI proteins are also targeted by a number of oncogenic viruses: it is aberrantly sequestered in the cytoplasm by Adenovirus E4orf1, and is targeted for degradation by the E6 oncoprotein of high-risk human papillomavirus. E6-mediated degradation of MAGI-1 in cultured epithelial cells leads to loss of tight-junction integrity (Padash Barmchi, 2016a and references therein).

There is a high degree of conservation of protein structure and function in the invertebrate homologues of Magi in particular with regards to epithelial junction formation and maintenance. In C. elegans, Magi-1 plays a role in the segregation of different cell adhesion complexes into distinct membrane domains along the lateral plasma membrane (Lynch, 2012; Stetak, 2011). In Drosophila, Magi binds Ras association domain protein 8 (RASSF8) and modulates adherens junctions remodeling in late eye development during interommatidial cell (IOC) rearrangements (Zaessinger, 2015). In this context Magi function is necessary to recruit the polarity protein Par-3 (Drosophila Bazooka, Baz) to the remodeling adherens junction. However, the association of Drosophila Magi or any Magi homologue with any components of the Par polarity complex in stable epithelia has not been determined (Padash Barmchi, 2016a).

The Par complex consisting of Par-3/Par-6/aPKC localizes to tight junctions where MAGI is present in vertebrate epithelial cells and is necessary for assembly of this junctional complex as well as for separation of the apical region of the plasma membrane from the basolateral domain. In Drosophila epithelial cells, the Par complex localizes to the apicolateral membrane and demarcates the boundary between the apical and basolateral membrane regions. Mutant embryos for any member of this complex show loss of apicobasal polarity and disruption in the integrity of epithelia. Although the members of the Par complex are important for the establishment of cell polarity, some of the core components of this complex such as Baz are dispensable for the maintenance of cell polarity during later stages of development. Baz localizes to adherens junction and mutant clones of baz in wing imaginal discs are fully viable with no polarity or adherens junction defects. Similarly, Magi function in AJ stability has been determined in many systems, but surprisingly loss of Drosophila Magi has no effect on established, stable AJs (Zaessinger, 2015). Little is known about the convergence of Magi and Par complex function at the adherens junctions and it is possible that Baz and Magi function in established epithelia are redundant. Therefore this study investigated the role of Magi in the established and stable epithelia of the Drosophila wing imaginal disc to test the potential interactions between Magi and members of the Par complex (Padash Barmchi, 2016a).

Drosophila Magi was found associated with the PAR polarity complex and is localized at the adherens junction with Baz, Par-6, and aPKC. Overexpression of Magi resulted in the reduction of apical polarity proteins from the membrane and these interactions required the second half of the Magi protein containing the four PDZ domains. Overexpression of Baz resulted in a reduction of Magi from the membrane but an increase in aPKC and Par-6. While Magi mutants were viable with no polarity defects, Magi levels were found to be antagonistic with Baz, and a balance between the two was found to be necessary to regulate the level and localization of Par complex (Padash Barmchi, 2016a).

PDZ domain-containing proteins form scaffolding protein complexes with a wide range of roles including cell polarity and signaling. As a MAGUK protein, Magi is part of a scaffold that interacts with members of the polarity complex at the adherens junctions in the epithelia of the imaginal disc. The scaffolding function of Magi has been well established in other systems. In vertebrates epithelial cells MAGI-1 has been shown to act as structural scaffold at tight junctions and adherens junctions. In C. elegans, Magi-1 localizes apical to adherens junction and functions as an organizer to ensure that different cell adhesion complexes are segregated into distinct membrane domains along the lateral plasma membrane. In neuronal cells MAGI-2/S-SCAM was also shown to cluster the cell adhesion molecule Sidekick, and the AMPA and NMDA glutamate receptors at the synapse (Padash Barmchi, 2016a).

Given the strong conservation of the Magi protein it is surprising that null mutants of Drosophila Magi exhibit no lasting cellular defects (other than transient defects in the interommatidial cells of the pupal eye and null animals are fully viable. Similarly in C. elegans, magi-1 null worms are healthy with only a few embryos (1.3%) with defects during the ventral enclosure stage. As Magi is highly conserved, it is plausible that Magi may only act in response to cell stress, DNA damage or some other trigger. For example, loss of p53 does not disrupt cellular function under normal conditions and p53 null flies or mice are viable with no cellular defects. However, the role of p53 in response to DNA damage is well established and when these animals are exposed to irradiation apoptosis is not induced. Alternatively, Magi function might be redundant with other components of the apical polarity complex or another protein and that loss of both is necessary for the disruption of cellular function. Core scaffolding components of the apicobasal polarity complex are dispensable for maintaining polarity in the wing imaginal disc epithelia supporting the idea of redundancy in this system. For instance, somatic clones of loss of function mutations in crb, sdt and baz have no effect on the polarity in the wing disc epithelia of the 3rd instar larvae. Baz is a strong candidate for redundancy with Magi given the localization to the adherens junction and function as a PDZ scaffolding protein. As loss of baz in the wing imaginal disc does not disrupt the polarity of wing disc epithelia this leads to the hypothesis that Baz and Magi are redundant. However, somatic clones of a baz null mutant in a Magi mutant background did not lead to a loss of cell polarity or apoptosis. While the two scaffolding proteins do not appear to functionally interact, it was observed that Magi and Baz are in a protein complex and their close proximity within the wing columnar epithelia also suggests a common complex. Overexpression of Magi displaces Baz and aPKC from the apical membrane and, likewise overexpression of Baz displaces Magi from the membrane. The simultaneous over-expression of Magi and Baz suppresses the changes caused by their individual expression, suggesting a balance or competition between the two proteins. The maintenance of a balance between Magi and Baz might be due to a direct physical competition between these two proteins or opposite effects on a common mediator or interactor (Padash Barmchi, 2016a).

Baz and vertebrate MAGI proteins bind the lipid phosphatase PTEN and thus the Magi-Baz interaction and balance could be influenced by changes in the level of phosphoinositides such as PtdIns(4,5)P2 (PIP2) or PtdIns(3,4,5)P3 (PIP3). In polarized epithelia, PIP2 is found within the apical domain and PIP3 restricted to the basal-lateral domain. Baz localization in polarized epithelia depends on PIP2 and on the PI4P5 kinase Skittles. Baz in turn can be a positive regulator of PIP2 levels at the plasma membrane by local recruitment of the lipid phosphatase PTEN. This study observed an increase in PIP3 levels with increased expression of Magi, which may reflect the loss of Baz and a loss of PTEN recruitment to the membrane. This study was not able to assess changes in PTEN levels at the membrane with available antibodies. However it was observe that the recruitment of Magi or Baz was not affected in Pten mutant cells. Similarly the changes in PIP3 levels are unlikely to be the cause of Baz loss in the presence of increased Magi as co-expression of PTEN and Magi still resulted in the loss of Baz from the membrane. Prior studies on Magi in Drosophila in the pupal eye did not detect any physical interaction between Drosophila Magi and Pten, and the phenotypes generated by overexpression of Magi in the Drosophila eye were not affected by Pten mutants. Therefore it is likely that loss of Baz in the presence of increased Magi in the wing imaginal disc and vice versa is through competition for a protein component (Padash Barmchi, 2016a).

In the developing eye Magi forms a protein complex with RASSF8 (the N-terminal Ras association domain-containing protein) and ASPP (Ankyrin-repeat, SH3-domain, and proline-rich-region containing protein), and this complex plays a role during remodeling of the adherens junctions in the interommatidial cells (IOCs) (Zaessinger, 2015). When IOCs rearrange to create the pupal lattice, this process requires regulation of the E-Cadherin complex where RASSF8 and ASPP regulate adherens junction remodeling and integrity through regulation of Src kinase activity. Magi recruits the RASSF8-ASPP complex in the process of adherens junction remodeling and there are defects in IOC rearrangement in Magi mutants where AJs are frequently interrupted. In the eye the Magi-RASSF8-ASPP complex is necessary for the cortical recruitment of Baz and of the adherens junction proteins α- and β-catenin. A model has been proposed where Magi-RASSF8-ASPP complex functions to localize Baz to remodeling junctions to promote the recruitment or stabilization of E-Cad complexes (Zaessinger, 2015). However, it is not thought that the RASSF8-ASPP complex is the point of competition between Magi and Baz within the wing imaginal disc. In the wing imaginal disc Magi and the RASSF8-ASPP complex are localized to the adherens junction domain independently (Zaessinger, 2015) and while RASSF8 mutants have a wing rounding phenotype, Magi mutants do not. Furthermore no differences were observed in Baz, Ecad or Arm distribution in Magi somatic loss of function clones in the wing imaginal disc. Finally the Magi WW domains are required for the interaction with RASSF8 (Zaessinger, 2015), while the overexpression of the Magi transgene that contains the PDZ domains led to a reduction in Baz suggesting that second half of the Magi protein containing the PDZ domains contains the important sites for this competition (Padash Barmchi, 2016a).

Therefore, a strong possibility to explain the reciprocal effects of overexpression is that Baz and Magi compete for a common binding site. Magi was found to interacte with both Baz and aPKC; the latter two are known to interact directly. However, it is unlikely that the shared site is through physical scaffolding of aPKC, as high levels of wild type aPKC had no effect on either Magi or Baz and was not able rescue the changes in Baz levels and localization caused by Magi overexpression. In addition the overexpression of Magi also led to a reduction in aPKC. It is unlikely that the loss of Baz is responsible for this displacement as aPKC is not mislocalized in Baz clones and Baz is not mislocalized in Par-6, aPKC or Cdc42 null clones. Further investigation is required to explore the mechanisms that underlie Magi interactions with components of the apical polarity complex and the adherens junction complex (Padash Barmchi, 2016a).

Drosophila model of HPV E6-induced malignancy reveals essential roles for Magi and the Insulin receptor

The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A; see Drosophila Ube3a) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. An in vivo model of HPV E6-mediated cellular transformation was developed using Drosophila as model. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Tumorigenesis occurred when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. This study identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. These results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation (Padash Barmchi, 2016b).

Drosophila MAGI interacts with RASSF8 to regulate E-Cadherin-based adherens junctions in the developing eye

Morphogenesis is crucial during development to generate organs and tissues of the correct size and shape. During Drosophila late eye development, interommatidial cells (IOCs) rearrange to generate the highly organized pupal lattice, in which hexagonal ommatidial units pack tightly. This process involves the fine regulation of adherens junctions (AJs) and of adhesive E-Cadherin (E-Cad) complexes. Localized accumulation of Bazooka (Baz), the Drosophila PAR3 homolog, has emerged as a critical step to specify where new E-Cad complexes should be deposited during junction remodeling. However, the mechanisms controlling the correct localization of Baz are still only partly understood. This study shows that Drosophila Magi, the sole fly homolog of the mammalian MAGI scaffolds, is an upstream regulator of E-Cad-based AJs during cell rearrangements, and that Magi mutant IOCs fail to reach their correct position. They uncovered a direct physical interaction between Magi and the Ras association domain protein RASSF8 through a WW domain-PPxY motif binding, and showed that apical Magi recruited the RASSF8-ASPP complex during AJ remodeling in IOCs. Further, this Magi complex was required for the cortical recruitment of Baz and of the E-Cad-associated proteins α- and β-catenin. They propose that, by controlling the proper localization of Baz to remodeling junctions, Magi and the RASSF8-ASPP complex promote the recruitment or stabilization of E-Cad complexes at junction sites (Zaessinger, 2015).

As Magi is the sole Drosophila homolog of the three vertebrate MAGI scaffolds, it offers a powerful system with which to investigate the functions of these important proteins. Using newly generated null alleles, this study has shown that Magi coordinates the number and packing of IOCs in the developing Drosophila pupal eye by regulating AJ dynamics. Magi is necessary in the IOCs to localize the RASSF8-ASPP complex correctly during their junctional remodeling. This ensures the integrity of E-Cad-based junctions and the correct localization of Baz, α- and β-catenin. Based on these observations and on the growing evidence of a role for Baz in AJ remodeling, a model is proposed whereby, during AJ remodeling in IOCs, Magi recruits the RASSF8-ASPP complex, which helps to localize Baz at the membrane and regulates the sites of E-Cad accumulation (Zaessinger, 2015).

Junction remodeling is a key step during morphogenesis, in which cells in a tissue change position and neighbors. For instance, in the developing pupal eye, IOCs found between ommatidia organize as a single row of cells. During this process existing contacts are eliminated and new ones are established by remodeling E-Cad-based junctions. In Magi mutants, rearrangement defects and some incorrect localization of IOCs were observed. At the same time, E-Cad-based AJs were interrupted in Magi mutant cells. It is proposed that this defect in AJ remodeling leads to IOCs remaining at the wrong place in the lattice. The most parsimonious model is that the defects in AJ remodeling trigger the defects in cell numbers seen in Magi mutants by preventing apoptosis, although it was not possible to fully substantiate this as the effect of Magi on apoptosis was not statistically significant. If the model is correct, it still remains unclear how disrupted junctions would lead to a failure in apoptosis. One possibility is that IOCs only receive the correct 'death signal' when they have rearranged to contact the correct cells. Thus, in Magi mutants, the defective AJs would lead to apoptosis failure because the IOCs did not attain their position in the 'death zone' to receive the killing signal (Zaessinger, 2015).

These junctional defects are reminiscent of those seen for magi-1 mutants in the nematode C. elegans, in which magi-1 loss of function enhanced the defects caused by cadherin and catenin mutations and disrupted cell migration during enclosure (Lynch, 2012). MAGI scaffolds are thus implicated in the fine regulation of AJs in both flies and nematodes. A similar role has been suggested for MAGI proteins in mammalian epithelial cells. In overexpression studies, human MAGI1 reduced the Src-induced invasiveness of MDCK cells and stabilized E-Cad-mediated intercellular aggregation (Kotelevets, 2005). By analogy, the overexpression phenotype of Drosophila Magi could thus be due to stronger AJs, although this remains to be experimentally tested. The overexpression effects of MAGI-1b were sensitive to PTEN and AKT activities (Kotelevets, 2005) and mammalian MAGI scaffolds have also been implicated in PTEN activation through their direct binding to PTEN. However, this study did not detect any physical interaction between Drosophila Magi and Pten, and the overexpression phenotype of Magi, at least in the Drosophila eye, appeared insensitive to Pten. Although these are negative observations, they suggest that in Drosophila Magi and Pten do not form a complex to regulate AJs (Zaessinger, 2015).

Despite its effects on eye development, Magi mutants exhibit slightly enlarged wings. Whether this is dependent on E-Cad belt integrity and AJ dynamics remains to be established. The fact that ASPP shows a very similar wing phenotype supports this model (Zaessinger, 2015).

Rather than binding and modulating the activity of Pten, this analysis supports a model whereby Magi, by binding to the RASSF8-ASPP complex, recruits and stabilizes Baz at the membrane. Accumulation of Baz has been shown to specify and initiate the formation of new AJs both in cellularizing embryos and in photoreceptors. It is proposed that Baz recruited at the membrane of IOCs will in turn promote the stabilization or the proper distribution around the cell cortex of AJ material. Since biochemical and genetic experiments suggest that RASSF8 and Magi act together in a complex, it is proposed that the effects of Magi on AJs and on Baz membrane recruitment are mediated by RASSF8, and are thus likely to involve ASPP. Indeed, mammalian ASPP2 binds PAR3 and is required for PAR3 localization at junctions both in cell culture and in the mouse neuroepithelium. This suggests that Magi might control Baz localization through ASPP. However, Baz membrane recruitment is unlikely to be the only step to form correct AJs downstream of Magi/RASSF8/ASPP. Previous studies have implicated C-terminal Src kinase (Csk) and its action on Src kinase, and the relationships between Magi, Baz and Csk should be investigated in the future (Zaessinger, 2015).

During IOC remodeling, Magi therefore appears to be a crucial upstream regulator of AJs. However, the mechanisms governing Magi membrane localization are still unknown. One hypothesis is that the membrane recruitments of different AJ components and regulators are dependent on each other in stabilization loops. However, this is unlikely to be the case for Magi as it is still perfectly localized at the membrane in ASPP, RASSF8 and baz mutants, and in ASPP; RASSF8 double mutants (Zaessinger, 2015).

Another possibility is that Magi would require mature AJs with E-Cad to be at the membrane. No direct correlation was found between E-Cad accumulation around the apical membrane and Magi membrane localization. For instance, in ASPP; RASSF8 double-mutant cells, E-Cad belt interruptions were detected either without or with Magi, indicating that Magi localization does not require E-Cad directly. Furthermore, an extensive domain mapping of Magi failed to identify a single domain (WW or PDZ) that would be required for Magi recruitment, suggesting that it might be independent of these domains or that several redundant mechanisms may be at play. The nature of the signal required for Magi membrane localization thus remains to be uncovered (Zaessinger, 2015).

Even though Magi binds to RASSF8 directly and both proteins function together during Drosophila eye morphogenesis, their mutant phenotypes are not identical. First, RASSF8 mutants have a wing rounding phenotype, which is absent in Magi mutants. Second, whereas RASSF8 has a significant role in the global developmental apoptosis rate in the pupal eye, no significant effect could be detected for Magi and ASPP. Taken together, this suggests that the assembly of a Magi-RASSF8-ASPP complex might be context dependent or that RASSF8 has Magi-independent functions (Zaessinger, 2015).

Although the human N-terminal RASSF (RASSF7-10) proteins lack any PPxY motifs, one is present in ASPP2 and has been shown to bind to MAGI1. It is therefore possible that MAGI-ASPP complexes are formed in all organisms but the precise mode of interaction differs: mediated by RASSF8 in the fly, but direct in humans (Zaessinger, 2015).

MAGI scaffolds have been suggested to play a role in tumorigenesis. First, they are bound and inactivated by several viral oncoproteins. Second, MAGI1 has been shown to exhibit tumor suppressor activity in colorectal cancer cell lines in xenograft model. Finally, mutations in MAGI2 and MAGI3 are reported in colon, prostate and breast cancers. Documented alterations include deletion of the second WW motif of MAGI2 and a MAGI3:AKT3 fusion leading to a disruption of MAGI3. Based on the current work, it is proposed that these are loss-of-function mutations. It would be interesting to investigate whether changes in AJ dynamics are associated with these MAGI mutations in human cancers and whether they contribute to tumorigenesis (Zaessinger, 2015).

Functions of Magi orthologs in other species

MAGI-1 interacts with Nephrin to maintain slit diaphragm structure through enhanced Rap1 activation in podocytes

MAGI-1 is a multidomain cytosolic scaffolding protein that in the kidney is specifically located at the podocyte slit diaphragm, a specialized junction that is universally injured in proteinuric diseases. There it interacts with several essential molecules, including nephrin and neph1, which are required for slit diaphragm formation and as an intracellular signaling hub. This study shows that diminished MAGI-1 expression in cultured podocytes reduced nephrin and neph1 membrane localization and weakened tight junction integrity. Global magi1 knock-out mice, however, demonstrated normal glomerular histology and function into adulthood. It is hypothesized that a second mild but complementary genetic insult might induce glomerular disease susceptibility in these mice. To identify such a gene, the developing fly eye was used to test for functional complementation between MAGI and its binding partners. In this way, diminished expression of fly Hibris (nephrin) or Roughest (neph1) were identifed as dramatically exacerbating the effects of MAGI depletion. Indeed, when these combinations were studied in mice, the addition of nephrin, but not neph1, heterozygosity to homozygous deletion of MAGI-1 resulted in spontaneous glomerulosclerosis. In cultured podocytes, MAGI-1 depletion reduced intercellular contact-induced Rap1 activation, a pathway critical for proper podocyte function. Similarly, magi1 knock-out mice showed diminished glomerular Rap1 activation, an effect dramatically enhanced by concomitant nephrin haploinsufficiency. Finally, combined overexpression of MAGI-1 and nephrin increased Rap1 activation, but not when substituting a mutant MAGI-1 that cannot bind nephrin. It is concluded that the interaction between nephrin and MAGI-1 regulates Rap1 activation in podocytes to maintain long term slit diaphragm structure (Ni, 2016).

A genome-wide functional screen shows MAGI-1 is an L1CAM-dependent stabilizer of apical junctions in C. elegans

In multicellular organisms, cell-cell junctions are involved in many aspects of tissue morphogenesis. alpha-catenin links the cadherin-catenin complex (CCC) to the actin cytoskeleton, stabilizing cadherin-dependent adhesions. To identify modulators of cadherin-based cell adhesion, a genome-wide RNAi screen was conducted in C. elegans, and MAGI-1, a highly conserved protein scaffold, was uncovered. Loss of magi-1 function in wild-type embryos results in disorganized epithelial migration and occasional morphogenetic failure. MAGI-1 physically interacts with the putative actin regulator AFD-1/afadin; knocking down magi-1 or afd-1 function in a hypomorphic alpha-catenin background leads to complete morphogenetic failure and actin disorganization in the embryonic epidermis. MAGI-1 and AFD-1 localize to a unique domain in the apical junction and normal accumulation of MAGI-1 at junctions requires SAX-7/L1CAM, which can bind MAGI-1 via its C terminus. Depletion of MAGI-1 leads to loss of spatial segregation and expansion of apical junctional domains and greater mobility of junctional proteins. This screen is the first genome-wide approach to identify proteins that function synergistically with the CCC during epidermal morphogenesis in a living embryo. Novel physical interactions were demonstrated between MAGI-1, AFD-1/afadin, and SAX-7/L1CAM, which are part of a functional interactome that includes components of the core CCC. These results further suggest that MAGI-1 helps to partition and maintain a stable, spatially ordered apical junction during morphogenesis (Lynch, 2012).

The C. elegans MAGI-1 protein is a novel component of cell junctions that is required for junctional compartmentalization

Cell junctions are essential to maintain polarity and tissue integrity. Epithelial cell junctions are composed of distinct sub-compartments that together ensure the strong adhesion between neighboring cells. In Caenorhabditis elegans epithelia, the apical junction (CeAJ) forms a single electron-dense structure, but at the molecular level it is composed of two sub-compartments that function redundantly and localize independently as two distinct but adjacent circumferential rings on the lateral plasma membrane. While investigating the role of the multi PDZ-domain containing protein MAGI-1 during C. elegans epidermal morphogenesis, this study found that MAGI-1 localizes apical to both the Cadherin/Catenin (CCC) and AJM-1/DLG-1 (DAC) containing sub-domains. Removal of MAGI-1 function causes a loss of junctional compartmentalization along the lateral membrane and reduces the overall robustness of cell-cell adhesion mediated by either type of cell junctions. The results suggest that MAGI-1 functions as an "organizer" that ensures the correct segregation of different cell adhesion complexes into distinct domains along the lateral plasma membrane. Thus, the formation of stable junctions requires the proper distribution of the CCC and DAC adhesion protein complexes along the lateral plasma membrane (Stetak, 2011).

Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness

The critical role has been establised of the lipid phosphatase activity of the PTEN tumor suppressor in stabilizing cell-cell contacts and suppressing invasiveness. To delineate the effector systems involved, the interaction was investigated of PTEN with E-cadherin junctional complexes in kidney and colonic epithelial cell lines. PTEN and the p85 regulatory subunit of phosphatidylinositol 3-OH kinase (PI3K) co-immunoprecipitated with E-cadherin and catenins. By using a yeast two-hybrid assay, it was demonstrated that PTEN interacted indirectly with beta-catenin by binding the scaffolding protein MAGI-1b. This model was corroborated in various ways in mammalian cells. Ectopic expression of MAGI-1b potentiated the interaction of PTEN with junctional complexes, promoted E-cadherin-dependent cell-cell aggregation, and reverted the Src-induced invasiveness of kidney MDCKts-src cells. In this model, MAGI-1b slightly decreased the activity of AKT, a downstream effector of PI3K. By using dominant-negative and constitutively active AKT expression vectors, it was demonstrated that this kinase was included in the pathways involved in Src-induced destabilization of junctional complexes and was necessary and sufficient to trigger invasiveness. It is proposed that the recruitment of PTEN at adherens junctions by MAGI-1b and the local down-regulation of phosphatidylinositol-3,4,5-trisphosphate pools and downstream effector systems at the site of cell-cell contacts are focal points for restraining both disruption of junctional complexes and induction of tumor cell invasion (Kotelevets, 2005).


Search PubMed for articles about Drosophila Magi

Dobrosotskaya, I., Guy, R. K. and James, G. L. (1997). MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. J Biol Chem 272(50): 31589-31597. PubMed ID: 9395497

Gregorc, U., Ivanova, S., Thomas, M., Guccione, E., Glaunsinger, B., Javier, R., Turk, V., Banks, L. and Turk, B. (2007). Cleavage of MAGI-1, a tight junction PDZ protein, by caspases is an important step for cell-cell detachment in apoptosis. Apoptosis 12(2): 343-354. PubMed ID: 17191119

Kotelevets, L., van Hengel, J., Bruyneel, E., Mareel, M., van Roy, F. and Chastre, E. (2005). Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 19(1): 115-117. PubMed ID: 15629897

Lynch, A. M., Grana, T., Cox-Paulson, E., Couthier, A., Cameron, M., Chin-Sang, I., Pettitt, J. and Hardin, J. (2012). A genome-wide functional screen shows MAGI-1 is an L1CAM-dependent stabilizer of apical junctions in C. elegans. Curr Biol 22(20): 1891-1899. PubMed ID: 22981773

Ni, J., Bao, S., Johnson, R. I., Zhu, B., Li, J., Vadaparampil, J., Smith, C. M., Campbell, K. N., Grahammer, F., Huber, T. B., He, J. C., D'Agati, V. D., Chan, A. and Kaufman, L. (2016). MAGI-1 interacts with Nephrin to maintain slit diaphragm structure through enhanced Rap1 activation in podocytes. J Biol Chem 291(47): 24406-24417. PubMed ID: 27707879

Padash Barmchi, M., Samarasekera, G., Gilbert, M., Auld, V.J. and Zhang, B. (2016a). Magi is associated with the Par complex and functions antagonistically with Bazooka to regulate the apical polarity complex. PLoS One 11: e0153259. PubMed ID: 27074039

Padash Barmchi, M., Gilbert, M., Thomas, M., Banks, L., Zhang, B. and Auld, V. J. (2016b). A Drosophila model of HPV E6-induced malignancy reveals essential roles for Magi and the Insulin receptor. PLoS Pathog 12(8): e1005789. PubMed ID: 27537218

Stetak, A. and Hajnal, A. (2011). The C. elegans MAGI-1 protein is a novel component of cell junctions that is required for junctional compartmentalization. Dev Biol 350(1): 24-31. PubMed ID: 21034729

Zaessinger, S., Zhou, Y., Bray, S. J., Tapon, N. and Djiane, A. (2015). Drosophila MAGI interacts with RASSF8 to regulate E-Cadherin-based adherens junctions in the developing eye. Development 142(6): 1102-1112. PubMed ID: 25725070

Zaric, J., Joseph, J. M., Tercier, S., Sengstag, T., Ponsonnet, L., Delorenzi, M. and Ruegg, C. (2012). Identification of MAGI1 as a tumor-suppressor protein induced by cyclooxygenase-2 inhibitors in colorectal cancer cells. Oncogene 31(1): 48-59. PubMed ID: 21666716

Biological Overview

date revised: 26 October 2017

Home page: The Interactive Fly © 2011 Thomas Brody, Ph.D.