CAD protein is detected beginning with the nuclear division cycles 6 or 7, just prior to the formation of the syncytial blastoderm. Most maternal cad transcripts are produced by nurse cells and are subsequently deposited in the oocyte. caudal transcripts remain equally distributed in the embryo. By the 13th zygotic cleavage CAD protein and transcript assumes a linear gradient with the highest levels found in the posterior region. Transcripts move from anterior to posterior. During nuclear elongation most of the transcripts move to the dorsal side, but there is some ventral localization as well. By the terminal stages of cellularization, maternal transcripts disappear and a stripe of zygotic cad accumulates in the posterior. CAD protein originating from maternal transcripts becomes localized to pole cells.

Zygotic cad is expressed in the posterior end of the germ band [Image] in the anlagen for terminal abdominal structures and hindgut. In stage 12 germ-band extended embryos, cad distribution is limited to parasegment 15 and surrounds the presumptive anal pads. Subsequently, two regions of CAD staining cells appear posterior to the anal pads. These patterns share some features with the domains of Abd-B containing cells, but Abd-B is not expressed posterior to anal pads where CAD-containing cells stain (Kuhn, 1995). At the end of embryogenesis (after germ-band retraction), cad is expressed in cells of the posterior midgut, Malpighian tubules, hindgut and posterior epidermal cells (Macdonald, 1986, Mlodzik 1985, 1987a).

The genital disc of Drosophila, which gives rise to the genitalia and analia of adult flies, is formed by cells from different embryonic segments. To study the organization of this disc, the expressions of segment polarity and homeotic genes were investigated. The organization of the embryonic genital primordium and the requirement of the engrailed and invected genes in the adult terminalia were also analysed. The three primordia, the female and male genitalia plus the analia, are composed of an anterior and a posterior compartment. In some aspects, each of the three primordia resemble other discs: the expression of genes such as wingless and decapentaplegic in each anterior compartment is similar to that seen in leg discs; the absence of engrailed and invected causes duplications of anterior regions, as occurs in wing discs. The absence of lineage restrictions in some regions of the terminalia and the expression of segment polarity genes in the embryonic genital disc suggest that this model of compartmental organization evolves, at least in part, as the disc grows. The expression of homeotic genes suggests a parasegmental organization of the genital disc, although these genes may also change their expression patterns during larval development (Casares, 1997).

Mutations in Abd-B transform female genitalia into abdomen, suggesting that the activity of Abd-B is a prerequisite for the specification of the terminalia by the sex-determing genes. abd-A is expressed only in female genital discs, in the region corresponding to the female genital primordium, particularly in the prospective internal female genitalia. abd-A expression is coincident with engrailed in the central region of the female genital primordium engrailed band. Abd-B transcripts are located in the genital disc. The Abd-B protein is present in the male and female primordia in both male and female discs, leaving unstained the region where the analia map. Abd-B expression is coincident with en bands 1 and 2. In female discs, Abd-B m transcript is present only in the female genital primordium: transcript levels are strong in the prospective external genitalia and faint in the prospective internal genitalia. In the male disc, only the repressed male primordium is labelled. Abd-B r transcript is expressed in the repressed male primordium of female discs and the male genetal primordium of male discs. caudal is located in the analia primordium of the genital disc, overlapping with the third engrailed band. However, caudal and enoverlap in only a few, dorsally located, epidermal nuclei of stage 14 embryos. This overlap is not seen in the ventrally located embryonic genital disc where caudal expression is observed in its posterior region. This suggests that en expression in anal primordium of mature genital discs appears during larval development. The perianal ring corresponds to the terminal band of en, and the co-expression of en and cad is maintained from the third instar disc until the adult stage (Casares, 1997)


In third instar larval, transcripts appear in Malpighian tubules and posterior midgut and genital disc (Mlodzik 1987a).

Effects of Mutation or Deletion

cad mutants lack organs of the tail including anal tufts and anal sense organs, and portions of anal pads. When cad maternal component is also missing, deletions are observed in even numbered segments, with most of A8 and A10 deleted and replaced by small sclerotized tissue resembling mouth hooks. This can be interpreted to mean that cad is required for Abd-B function, that is, cad acts through Abd-B and is responsible for ventral suppression (Macdonald, 1986 and Kuhn, 1995).


Allan, D., et al. (2001). RARgamma and Cdx1 interactions in vertebral patterning. Dev. Biol. 240(1): 46-60. PubMed ID: 11784046

Bansal, D., et al. (2006). Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc. Natl. Acad. Sci. 103(45): 16924-9. PubMed ID: 17068127

Baugh, L. R., et al. (2005). The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development 132(8): 1843-54. PubMed ID: 15772128

Beck, C. W. and Slack, J. M. W. (1998). Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and growth. Mech. Dev. 72(1-2): 41-52. PubMed ID: 9533951

Beck, F. Erler, T., Russell, A. and James, R. (1995). Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev. Dyn. 204: 219-227. PubMed ID: 8573715

Beck, F., et al. (2003). A study of regional gut endoderm potency by analysis of Cdx2 null mutant chimaeric mice. Dev. Bio. 255: 399-406. PubMed ID: 12648499

Bel-Vialar, S., Itasaki, N. and Krumlauf, R. (2002). Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129: 5103-5115. PubMed ID: 12399303

Berman, B. P., et al. (2002). Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc. Natl. Acad. Sci. 99: 757-762. PubMed ID: 11805330

Brooke, N. M., Garcia-Fernandez, J. and Holland, P. W. (1998). The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392(6679): 920-922. PubMed ID: 9582071

Berger, M. F., et al. (2008). Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133(7): 1266-76. PubMed ID: 18585359

Burke, T. W. and Kadonaga, J. T. (1996). Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 10: 711-724. PubMed ID: 8598298

Clark, E. and Peel, A. D. (2018). Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development. PubMed ID: 29724758

Casanova, J. Sanchez-Herrero, E. and Morata, G. (1986). Identification and characterization of a parasegment specific regulatory element of the Abdominal-B gene of Drosophila. Cell 47: 627-636. PubMed ID: 2877742

Casares, F., et al. (1997). The genital disc of Drosophila melanogaster. I. Segmental and compartmental organization. Dev. Genes Evol. 207: 216-228

Charite, J., et al. (1998). Transducing positional information to the Hox genes: critical interaction of cdx gene products with position-sensitive regulatory elements. Development 125(22): 4349-4358. PubMed ID: 9778495

Chawengsaksophak, K., et al. (1997). Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386: 84-87. PubMed ID: 9052785

Cheng, P.-Y., et al. (2008). Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development 135: 941-952. PubMed ID: 18234726

Chipman, A. D., Arthur, W. and Akam, M. (2004). A double segment periodicity underlies segment generation in centipede development. Curr Biol. 14(14): 1250-5. 15268854

Cho, P. F., et al. (2005). A new paradigm for translational control: inhibition via 5'-3' mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121(3): 411-23. PubMed ID: 15882623

Choi, Y.-J., Choi, T.-Y., Yamaguchi, M., Matsukage, A., Kim, Y.-S., Yoo, M.-A. (2004). Transcriptional regulation of the Drosophila caudal homeobox gene by DRE/DREF. Nucleic Acids Res 32: 3734-3742. PubMed ID: 15254275

Cole, A. G., Rizzo, F., Martinez, P., Fernandez-Serra, M. and Arnone, M. I. (2009). Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development. 136(4): 541-9. PubMed ID: 19144720

Copf, T., et al. (2003). Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130: 5915-5927. PubMed ID: 14561635

Dearolf, C. R., Topol, J. and Parker, C. S. (1989). The caudal gene product is a direct activator of fushi tarazu transcription during Drosophila embryogenesis. Nature 341: 340-3. PubMed ID: 2571934

Dietrich, J. E. and Hiiragi, T. (2007). Stochastic patterning in the mouse pre-implantation embryo. Development 134: 4219-4231. PubMed ID: 17978007

Dubnau, J. and Struhl, G. (1996). RNA recognition and translational regulation of a homeodomain protein. Nature 379: 694-699 . PubMed ID: 8602214

Duluc, I., et al. (1997). Changing intestinal connective tissue interactions alters homeobox gene expression in epithelial cells. J. Cell Sci. 110: 1317-1324. PubMed ID: 9202392

Duprey, P., et al. (1988). A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes Dev. 2(12A):1647-54. PubMed ID: 2905686

Edgar, L. G., et al. (2001). Zygotic expression of the caudal homolog pal-1 is required for posterior patterning in Caenorhabditis elegans embryogenesis. Dev. Biol. 229: 71-88. PubMed ID: 11133155

Epstein, M., et al. (1997). Patterning of the embryo along the anterior-posterior axis: the role of the caudal genes. Development 124(19): 3805-3814

Fu, J., et al. (2012). Asymmetrically expressed axin required for anterior development in Tribolium. Proc. Natl. Acad. Sci. 109(20): 7782-6. PubMed ID: 22552230

Gamer, L. W. and Wright, C. V. (1993). Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech. Dev. 43: 71-81 . PubMed ID: 7902125

Gao, N., White, P. and Kaestner, K. H. (2009). Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell. 16(4): 588-99. PubMed ID: 19386267

Gao, N. and Kaestner, K. H. (2010). Cdx2 regulates endo-lysosomal function and epithelial cell polarity. Genes Dev. 24(12): 1295-305. PubMed ID: 20551175

Gaunt, S. J., Drage, D. and Cockley, A. (2003). Vertebrate caudal gene expression gradients investigated by use of chick cdx-A/lacZ and mouse cdx-1/lacZ reporters in transgenic mouse embryos: evidence for an intron enhancer. Mech. Dev. 120: 573-586. PubMed ID: 12782274

Gursky, V. V., Jaeger, J., Kozlov, K. N., Reinitz, J. and Samsonov, A. M. (2004). Pattern formation and nuclear divisions are uncoupled in Drosophila segmentation: Comparison of spatially discrete and continuous models. Physica D 197: 286-302. Full text: Gursky, 2004

Han, S. H., et al. (2004). The moleskin gene product is essential for Caudal-mediated constitutive antifungal Drosomycin gene expression in Drosophila epithelia. Insect Mol. Biol. 13(3): 323-7. PubMed ID: 15157233

Haremaki, T., et al. (2003). Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3. Development 130: 4907-4917. PubMed ID: 12930781

Houle, M., Sylvestre, J.-R. and Lohnes, D. (2003). Retinoic acid regulates a subset of Cdx1 function in vivo. Development 130: 6555-6567. PubMed ID: 14660544

Huang, N. M., et al. (2002). MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans. Development 129: 747-759. PubMed ID: 11830574

Hunter, C. P. and Kenyon, C. (1997). Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell 87(2): 217-226 . PubMed ID: 8861906

Hunter, C. P., et al. (1999). Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit Wnt signaling. Development 126(4): 805-814 . PubMed ID: 9895327

Ikeya, M. and Takada, S. (2001). Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mech. Dev. 103: 27-33. PubMed ID: 11335109

Isaacs, H. V., Pownall, M. E. and Slack, J. M. (1998). Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J. 17(12): 3413-3427

Jaeger, J., et al. (2004a). Dynamic control of positional information in the early Drosophila embryo. Nature 430: 368-371. PubMed ID: 15254541

Jaeger, J., et al. (2004b). Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics 167: 1721-1737. PubMed ID: 15342511

Juven-Gershon, T., Hsu, J. Y. and Kadonaga, J. T. (2008). Caudal, a key developmental regulator, is a DPE-specific transcriptional factor. Genes Dev. 22(20): 2823-30. PubMed ID: 18923080

Katsuyama, Y., et al. (1999). Ascidian tail formation requires caudal function. Dev. Biol. 213(2): 257-68 . PubMed ID: 10479446

Kuhn, D. T., et al. (1995). Analysis of the genes involved in organizing the tail segments of the Drosophila melanogaster embryo. Mech. Dev. 53: 3-13. PubMed ID: 8555109

Laranjeiro, R. and Whitmore, D. (2014). Transcription factors involved in retinogenesis are co-opted by the circadian clock following photoreceptor differentiation. Development 141: 2644-2656. PubMed ID: 24924194

La Rosee, A., et al. (1997). Mechanism and Bicoid-dependent control of hairy stripe 7 expression in the posterior region of the Drosophila embryo. EMBO J. 16(14): 4403-4411. PubMed ID: 9250684

Lengerke, C., et al. (2011). Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Dev. Biol. 354(1): 134-42. PubMed ID: 21466798

Lei, H., Liu, J., Fukushige, T., Fire, A. and Krause, M. (2009). Caudal-like PAL-1 directly activates the bodywall muscle module regulator hlh-1 in C. elegans to initiate the embryonic muscle gene regulatory network. Development 136(8): 1241-9. PubMed ID: 19261701

Lemke, S. and Schmidt-Ott, U. (2009). Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Development 136(1): 117-27. PubMed ID: 19060334

Lemke, S., et al. (2010). Maternal activation of gap genes in the hover fly Episyrphus. Development 137(10): 1709-19. PubMed ID: 20430746

Levy, V., et al. (2002). The competence of marginal zone cells to become Spemann’s organizer is controlled by Xcad2. Dev. Bio. 248: 40-51. PubMed ID: 12142019

Lickert, H., et al. (2000). Wnt/beta-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127: 3805-3813. PubMed ID: 10934025

Liu, S. and Jack, J. (1992). Regulatory interactions and role in cell type specification of the Malpighian tubules by the cut, Krüppel, and caudal genes of Drosophila. Dev. Biol. 150: 133-43. PubMed ID: 1537429

Lorentz, O., et al. (1997). Key role of the cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J. Cell Biol. 139(6): 1553-1565. PubMed ID: 9396760

Macdonald, P. and Struhl, B. (1986). A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324: 537-545. PubMed ID: 2878369

McGregor, A. P., et al. (2008). Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr. Biol. 18: 1619-1623. PubMed ID: 18926703

Meyer, B. I. and Gruss, P. (1993). Mouse Cdx-1 expression during gastrulation. Development 117(1): 191-203. PubMed ID: 7900985

Mlodzik, M., Fjose, A. and Gehring, W.J. (1985). Isolation of caudal, a Drosophila homeobox-containing gene with maternal expression, whose transcription form a concentration gradient at the pre-blastoderm stage. EMBO J. 4: 2961-2969. PubMed ID: 16453641

Mlodzik, M. and Gehring, W.J. (1987a). Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis. Cell 48: 465-478 . PubMed ID: 2433048

Mlodzik, M. and Gehring, W.J. (1987b). Hierarchy of the genetic interactrons that specify the anterior-posterior segmentation patterns in Drosophila embryo monitored by caudal protein expression. Development 101: 421-435

Mlodzik, M., Gibson, G. and Gehring, W. J. (1990). Effects of ectopic expression of caudal during Drosophila development. Development 109: 271-7 . PubMed ID: 1976085

Mootz, D., Ho, D. M. and Hunter, C. P. (2004). The STAR/Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control of C. elegans PAL-1. Development 131: 3263-3272. PubMed ID: 15201219

Niessing, D., et al. (1999). Sequence interval within the PEST motif of Bicoid is important for translational repression of Caudal mRNA in the anterior region of the Drosophila embryo. EMBO J. 18(7): 1966-1973. PubMed ID: 10202159

Niessing, D., et al. (2000). Homeodomain position 54 specifies transcriptional versus translational control by Bicoid. Molec. Cell 5: 395-401. PubMed ID: 10882080

Niessing, D., Blanke, S. and Jäckle, H. (2002). Bicoid associates with the 5'-cap-bound complex of caudal mRNA and represses translation. Genes Dev. 16: 2576-2582. PubMed ID: 12368268

Nishioka, N., et al. (2008). Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125: 270-283. PubMed ID: 18083014

Niwa, H., et al. (2005). Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123: 917-929. PubMed ID: 16325584

Northrop, J. L.,and Kimelman, D. (1994). Dorsal-ventral differences in Xcad-3 expression in response to FGF-mediated induction in Xenopus. Dev Biol 161: 490-503. PubMed ID: 7906234

Northrop, J., et al. (1995). BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated mesoderm induction in Xenopus. Dev. Biol. 172(1): 242-252 . PubMed ID: 7589804

Oberhofer, G., Grossmann, D., Siemanowski, J. L., Beissbarth, T. and Bucher, G. (2014). Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone. Development 141(24): 4740-50. PubMed ID: 25395458

Oda, H., et al. (2007). Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134(12): 2195-205. PubMed ID: 17507394

Olesnicky, E. C., et al. (2006). A caudal mRNA gradient controls posterior development in the wasp Nasonia. Development 133(20): 3973-82. PubMed ID: 16971471

Olesnicky, E. C. and Desplan, C. (2007). Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia. Dev. Biol. 306(1): 134-42. PubMed ID: 17434472

Papatsenko, D., Goltsev, Y. and Levine, M. (2009). Organization of developmental enhancers in the Drosophila embryo. Nucl. Acids Res. 37: 5665-5677. PubMed ID: 19651877

Papatsenko, D. and Levine, M. (2011). The Drosophila gap gene network is composed of two parallel toggle switches. PLoS One 6(7): e21145. PubMed ID: 21747931

Perkins, T. J., Jaeger, J., Reinitz, J. and Glass, L. (2006). Reverse engineering the gap gene network of Drosophila melanogaster. PLoS Comput. Biol. 2(5): e51. PubMed ID: 16710449

Pillemer, G., et al. (1998a). Nested expression and sequential downregulation of the Xenopus caudal genes along the anterior-posterior axis. Mech. Dev. 71(1-2): 193-196. PubMed ID: 9507125

Pillemer, G., et al. (1998b). The Xcad-2 gene can provide a ventral signal independent of BMP-4. Mech. Dev. 74(1-2): 133-143. PubMed ID: 9651504

Pilon, N., Oh, K., Sylvestre, J. R., Savory, J. G. and Lohnes, D. (2007). Wnt signaling is a key mediator of Cdx1 expression in vivo. Development 134(12): 2315-23. PubMed ID: 17537796

Posfai, E., Petropoulos, S., de Barros, F. R., Schell, J. P., Jurisica, I., Sandberg, R., Lanner, F. and Rossant, J. (2017). Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. Elife 6. PubMed ID: 28226240

Pownall, M. E., et al. (1996). eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 122: 3881-3892. PubMed ID: 9012508

Prinos, P., et al. (2001). Multiple pathways governing Cdx1 expression during murine development. Dev. Bio. 238: 257-269. PubMed ID: 11784033

Pultz, M. A., Pitt, J. N. and Alto, N. M. (1999). Extensive zygotic control of the anteroposterior axis in the wasp Nasonia vitripennis. Development 126(4): 701-710. PubMed ID: 9895318

Rabet, N., et al. (2001). The caudal gene of the barnacle Sacculina carcini is not expressed in its vestigial abdomen. Dev. Genes Evol. 211: 172-178. PubMed ID: 11455431

Ralston, A. and Rossant, J. (2008). Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol. 313: 614-629. PubMed ID: 18067887

Rivera-Pomar, R., et al. (1995). Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376: 253-256. PubMed ID: 7617036

Rivera-Pomar, R., et al. (1996a). RNA binding and translational suppression by bicoid. Nature 379: 746-749. PubMed ID: 8602224

Rivera-Pomar, R. and Jäckle, H. (1996b). From gradients to stripes in Drosophila embryogenesis: Filling in the gaps. Trends Genet 12: 478-483. PubMed ID: 8973159

Ryu, J. H., et al. (2004). The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol. Cell Biol. 24(1): 172-85. PubMed ID: 14673153

Sanchez, L. and Thieffry, D. (2001). A logical analysis of the gap gene system. J. Theor. Biol. 211: 115-141. PubMed ID: 11419955

Satyanarayana, A., et al. (2008). Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135(20): 3389-400. PubMed ID: 18787066

Savory, J. G., et al. (2009). Cdx2 regulation of posterior development through non-Hox targets. Development 136(24): 4099-110. PubMed ID: 19906845

Savory, J. G., et al. (2011). Cdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7. Development 138(7): 1361-70. PubMed ID: 21350009

Schroder, R., et al. (2000). Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. 97: 6591-6596. PubMed ID: 10823887

Schulz, C. and Tautz, D. (1995). Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo. Development 121: 1023-1028. PubMed ID: 7743918

Schulz, C., et al. (1998). A caudal homologue in the short germ band beetle Tribolium shows similarities to both, the Drosophila and the vertebrate caudal expression patterns. Dev. Genes Evol. 208(5): 283-9. PubMed ID: 9683744

Shimizu, T., et al. (2004). Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev. Bio. 279: 125-141. PubMed ID: 15708563

Shimizu, T., Bae, Y.-K. and Hibi, M. (2006). Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue. Development 133: 4709-4719. PubMed ID: 17079270

Shinmyo, Y., et al. (2005). caudal is required for gnathal and thoracic patterning and for posterior elongation in the intermediate-germband cricket Gryllus bimaculatus. Mech. Dev. 122(2): 231-9. PubMed ID: 15652710

Shiotsugu, J., et al. (2004). Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 131: 2653-2667. PubMed ID: 15128657

Singer, J. B., et al. (1996). Drosophila brachyenteron regulates gene activity and morphogenesis in the gut. Development 122: 3707-18. PubMed ID: 9012492

Singh, N., Morlock, H. and Hanes, S. D. (2011). The Bin3 RNA methyltransferase is required for repression of caudal translation in the Drosophila embryo. Dev. Biol. 352(1): 104-15. PubMed ID: 21262214

Skromne, I., Thorsen, D., Hale, M., Prince, V. E. and Ho, R. K. (2007). Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 134(11): 2147-58. PubMed ID: 17507415

Strumpf, D., et al. (2005). Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132: 2093-2102. PubMed ID: 15788452

Subramanian, V., Meyer, B. I. and Gruss, P. (1995). Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83(4): 641-53. PubMed ID: 7585967

Subramanian, V., Meyer, B. and Evans, G. S. (1998). The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation 64(1): 11-18. PubMed ID: 9921649

Suh, E., et al. (1994). A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol 14: 7340-7351. PubMed ID: 7935448

Tour, E., Pillemer, G., Gruenbaum, Y. and Fainsod, A. (2002). Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus. Mech Dev. 112(1-2): 141-51. PubMed ID: 11850185

van den Akker, E., et al. (2002). Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129: 2181-2193. PubMed ID: 11959827

van de Ven, C., et al. (2011). Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 138(16): 3451-62. PubMed ID: 21752936

Wolff, C., et al. (1998). Regulation of the Tribolium homologues of caudal and hunchback in Drosophila: evidence for maternal gradient systems in a short germ embryo. Development 125(18): 3645-3654. PubMed ID: 9716530

Wu, L. H. and Lengyel, J. A. (1998). Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore. Development 125: 2433-2442. PubMed ID: 9609826

Xu, X., Xu, P. X. and Suzuki, Y. (1994). A maternal homeobox gene, Bombyx caudal, forms both mRNA and protein concentration gradients spanning anteroposterior axis during gastrulation. Development 120: 277-285. PubMed ID: 7908628

Young, T., et al. (2009). Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev. Cell 17(4): 516-26. PubMed ID: 19853565

Zabet, N. R. and Adryan, B. (2014). Estimating binding properties of transcription factors from genome-wide binding profiles. Nucleic Acids Res 43(1):84-94. PubMed ID: 25432957

caudal: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation

date revised: 10 August 2018

Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.