The Interactive Fly

Evolutionarily conserved developmental pathways

Paf1 complex manifests its effects on transcription through modulating chromatin structure

The Paf1 complex in yeast has been reported to influence a multitude of steps in gene expression through interactions with RNA polymerase II (Pol II) and chromatin-modifying complexes; however, it is unclear which of these many activities are primary functions of Paf1 and are conserved in metazoans. The Drosophila homologs of three subunits of the yeast Paf1 complex have been identified and characterized and striking differences were found between the yeast and Drosophila complexes. Although Drosophila Paf1, Rtf1, and Cdc73 (Hyrax) colocalize broadly with actively transcribing, phosphorylated Pol II, and all are recruited to activated heat shock genes with similar kinetics; Rtf1 does not appear to be a stable part of the Drosophila Paf1 complex. RNA interference (RNAi)-mediated depletion of Paf1 or Rtf1 leads to defects in induction of Hsp70 RNA, but tandem RNAi-chromatin immunoprecipitation assays show that loss of neither Paf1 nor Rtf1 alters the density or distribution of phosphorylated Pol II on the active Hsp70 gene. However, depletion of Paf1 reduces trimethylation of histone H3 at lysine 4 in the Hsp70 promoter region and significantly decreases the recruitment of chromatin-associated factors Spt6 and FACT, suggesting that Paf1 may manifest its effects on transcription through modulating chromatin structure (Adelman, 2006; full text of article).

Proper control of gene expression is necessary for the development, differentiation, and survival of the cell, and transcription regulation is a cornerstone of this process. The formation of mRNA in eukaryotes involves a complex multistep pathway wherein each step provides an opportunity for regulation. Once RNA polymerase II (Pol II) has been recruited to a promoter and initiates transcription, it must efficiently escape from the promoter-proximal region and transcribe through a gene that is covered with nucleosomes. The nascent RNA must also be capped, spliced, polyadenylated, and exported to the cytoplasm before it can serve as a template for protein translation. Recent evidence from many laboratories indicates that there is a dynamic interplay between the protein complexes that carry out mRNA transcription, processing, and export, such that the efficiency of one step can have significant consequences for other steps in the pathway. For this reason, many factors that are required for the production of functional, mature RNA and were initially thought to directly stimulate Pol II transcription elongation have since been shown to elicit their primary effects on cotranscriptional processing or RNA export. Thus, a major goal towards understanding the mechanisms of transcription regulation requires the identification of both the direct and indirect activities of the numerous factors implicated in RNA production (Adelman, 2006).

The yeast Paf1 complex is one example of a factor that has been linked to a number of transcription-related activities. Yeast Paf1 is a complex of at least five polypeptides (Paf1, Rtf1, Cdc73, Leo1, and Ctr9) that has been implicated in processes as divergent as transcription initiation and elongation, modification of histone tails, phosphorylation of the Pol II C-terminal domain (CTD), RNA processing, and export. Although yeast Paf1 was originally thought to be an alternate mediator based upon its direct interactions with Pol II, it has since been found to be recruited throughout the body of active genes and to associate with the elongation-competent form of Pol II (Krogan, 2002; Mueller, 2004; Pokholok, 2002; Simic, 2003). Additional roles for the Paf1 complex have been suggested by the association of Paf1 with several RNA processing and export factors, such as Ccr4, the major yeast deadenylase, and Hpr1, a component of the THO complex that is involved in the export of mRNAs (Adelman, 2006).

Components of the Paf1 complex are nonessential in yeast, but mutations in Paf1 subunits confer sensitivity to 6-azauracil and generate Spt phenotypes, which are generally thought to signify defects in transcription elongation (Costa, 2000; Squazzo, 2002). In vitro transcription assays with naked DNA templates suggested that Paf1 and Cdc73 might directly stimulate transcription elongation (Rondon, 2004); however, it is not clear what effects Paf1 has on elongation rates in vivo. In Saccharomyces cerevisiae, deletion of Paf1 or Cdc73 did not alter the distribution of Pol II on an active gene but dramatically decreased the chromatin immunoprecipitation (ChIP) signal observed for serine 2-phosphorylated (Ser2-P) Pol II. Consistent with a Ser2 phosphorylation defect, recruitment of 3' cleavage and processing factors was impaired in the paf1Delta strain and poly(A) tail length was modestly shortened (Adelman, 2006).

A link between the Paf1 complex and the chromatin architecture within transcribed regions has been suggested by genetic interactions between Paf1 components and Chd1 (see Drosophila Chd1), subunits of the yeast FACT complex, and histone assembly factors in the Hir/Hpc pathway (Formosa, 2002: Simic, 2003; Squazzo, 2002). The packaging of template DNA into nucleosomes is known to represent a formidable obstacle to Pol II elongation in vitro, an obstacle that is overcome in vivo by a number of proteins that facilitate Pol II elongation by modifying chromatin structure and/or stability. Examples of factors that have been implicated in transcription through nucleosomes are chromatin remodeling enzymes, such as Chd1 and Swi/Snf, and histone-binding proteins like Spt6 and FACT. The ensemble of these complexes appear to help disassemble nucleosomes to promote efficient Pol II transcription through bound DNA and then to reassemble nucleosomes after the passage of Pol II. Both Spt6 and FACT have recently been shown to help maintain the proper balance between assembly and disassembly of nucleosomes during active transcription by Pol II (Kaplan, 2003), with the loss of these factors leading to a net failure to reassemble nucleosomes in the wake of transcription (Adelman, 2006).

The yeast Paf1 complex is required for ubiquitination of histone H2B at lysine 123 in the promoter-proximal region of activated genes (Ng, 2003; Sun, 2002; Wood, 2003). This ubiquitination event is a prerequisite for the methylation of histone H3 (at lysine residues 4 and 79) that accompanies active transcription in yeast; thus, the latter processes are defective in cells lacking functional Paf1 (Ng, 2003; Sun, 2002; Wood, 2003). In addition, the Paf1 complex has been reported to be critical for the recruitment of the yeast SET2 histone methyltransferase complex to actively transcribed genes, leading to methylation of histone H3 at residue lysine 36 (Krogan, 2003; Xiao, 2005; Adelman, 2006 and references therein).

Although the yeast Paf1 complex has been studied extensively, a number of important questions remain unanswered. Key questions concern the nature of the interactions between the subunits of the Paf1 complex and their associations with Pol II, as well as the importance of Pol II binding in Paf1 function. A pivotal issue concerns the fact that deletion of Rtf1 or Cdc73 has been reported to reduce the association of all Paf1 components with the Pol II and chromatin yet lead to much weaker phenotypes than does deletion of the other Paf1 components. These results have led some to propose that the critical role of Paf1 occurs when the complex is not chromatin associated; however, the other potential activities of Paf1 have yet to be clearly identified. Furthermore, the subunit composition of the Paf1 complex in human cells appears to differ from that in yeast, since the human Rtf1 protein does not appear to stably associate with the other members of the Paf1 complex (Adelman, 2006).

To address these issues and to investigate the activity of Paf1-associated proteins in Drosophila, the Drosophila homologs of the yeast Paf1, Rtf1, and Cdc73 proteins were identified and characterized. In vivo analyses of the Drosophila Paf1 complex uncover both important similarities to and differences from the reported functions of Paf1 in yeast and provide insight into the connections among histone methylation, nucleosome stability, and transcription activation in a metazoan organism. Strikingly, the Drosophila Paf1 homolog is a previously annotated gene that encodes an essential protein, suggesting that the role of Paf1 has evolved and become more critical in metazoans. Rtf1 is not stably associated with the Drosophila Paf1 and Cdc73 proteins in vivo and shows only a weak interaction with Pol II. Moreover, when Paf1-depleted cells are assayed by tandem RNA interference (RNAi)-ChIP, no changes were observed in the level of Ser2-P Pol II on the Hsp70 gene, in contrast to results obtained with yeast. Interestingly, it appears that major effects of Paf1 depletion are the loss of H3-K4 trimethylation near the Hsp70 promoter and a significant decrease in the recruitment of Spt6 and FACT to the body of the Hsp70 gene, suggesting that Drosophila Paf1 may coordinate the activities of elongating Pol II with factors that maintain the proper chromatin architecture during transcription (Adelman, 2006).

date revised: 1 December 2007

Developmental Pathways conserved in Evolution

Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.