REFERENCES (part 2/2)

Nambu, J. R., et al. (1990). The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63: 63-75. PubMed Citation: 2242162

Nasiadka, A. and Krause, H. M. (1999). Kinetic analysis of segmentation gene interactions in Drosophila embryos. Development 126: 1515-1526. PubMed Citation: 10068644

Nederbragt, A. J., van Loon, A. E. and Dictus, W. J. A. G. (2002). Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev. Biol. 246: 341-355. 12051820

Oktaba, K., et al. (2008). Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15: 877-889. PubMed Citation: 18993116

Omi, M., Harada, H., Watanabe, Y., Funahashi, J. and Nakamura, H. (2014). Role of En2 in the tectal laminar formation of chick embryos. Development 141: 2131-2138. PubMed ID: 24803658

Patel, S. R., Kim, D., Levitan, I. and Dressler, G. R. (2007). The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev. Cell 13: 580-592. PubMed Citation: 17925232

Peltenburg, L. T. C. and Murre, C. (1996). Engrailed and Hox homeodomain proteins contain a related Pbx interaction motif that recognizes a common structure present in Pbx. EMBO J. 15: 3385-93. PubMed Citation: 8698039

Peltenburg, L. T. and Murre, C. (1997). Specific residues in the Pbx homeodomain differentially modulate the DNA-binding activity of Hox and Engrailed proteins. Development 124 (5): 1089-1098. PubMed Citation: 9056783

Peterson, M. D., Popadic, A. and Kaufman, T. C. (1998). The expression of two engrailed-related genes in an apterygote insect and a phylogenetic analysis of insect engrailed-related genes. Dev. Genes Evol. 208(10): 547-57. 99030734

Pezier, A., Jezzini, S. H., Marie, B. and Blagburn, J. M. (2014). Engrailed alters the specificity of synaptic connections of Drosophila auditory neurons with the giant fiber. J Neurosci 34: 11691-11704. PubMed ID: 25164665

Picke, A., et al. (2002). A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines. Development 129: 3227-3239. 12070097

Pizette, S., Abate-Shen, C. and Niswander, L. (2001). BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 128: 4463-4474. 11714672

Plaza, S., et al. (1997). The homeobox-containing Engrailed (En-1) product down-regulates the expression of Pax-6 through a DNA binding-independent mechanism. Cell Growth Differ. 8(10): 1115-25

Poole, S.J. et. al. (1985). The engrailed locus of Drosophila: Structural analysis of an embryonic transcript. Cell 40: 37-43

Prud'homme, B., et al. (2003). Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr. Biol. 13: 1876-1881. 14588243

Randsholt, N. B., Maschat, F. and Santamaria, P. (2000). polyhomeotic controls engrailed expression and the hedgehog signaling pathway in imaginal discs. Mech. Dev. 95: 89-99.

Recasens-Alvarez, C., Ferreira, A. and Milán, M. (2017). JAK/STAT controls organ size and fate specification by regulating morphogen production and signalling. Nat Commun 8: 13815. PubMed ID: 28045022

Retaux, S., McNeill, L. and Harris, W.A. (1996). Engrailed, retinotectal targeting and axonal patterning in the midbrain during Xenopus development: an antisense study. Neuron 16: 63-75

Riechmann, V., et al. (1998). The genetic control of the distinction between fat body and gonadal mesoderm in Drosophila. Development 125(4): 713-723

Rhinn, M., et al. (1999). Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126: 4295-4304

Riou, J.-F., et al. (1998). Role of fibroblast growth factor during early midbrain development in Xenopus. Mech. Dev. 78(1-2): 3-15

Ristoratore, F., et al. (1999). The midbrain-hindbrain boundary genetic cascade is activated ectopically in the diencephalon in response to the widespread expression of one of its components, the medaka gene Ol-eng2. Development 126: 3769-3779

Roberto, N., Becam, I., Plessis, A. and Holmgren, R. A. (2022). Engrailed, Suppressor of fused and Roadkill modulate the Drosophila GLI transcription factor Cubitus interruptus at multiple levels. Development 149(6). PubMed ID: 35290435

Rodriguez-Esteban, C., et al. (1997). Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386: 360-366

Rogers, B. T. and Kaufman, T. C. (1996). Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development 122, 3419-3432

Rogina, B. and Helfand, S. L. (1997). Spatial and temporal pattern of expression of the wingless and engrailed genes in the adult antenna is regulated by age-dependent mechanisms. Mech. Dev. 63 (1): 89-97

Romani, S., et al. (1996). Krüppel, a Drosophila segmentation gene, participates in the specification of neurons and glial cells. Mech. Dev. 60: 95-107

Saenz-Robles, M. T., et al. (1995). Selection and characterization of sequences with high affinity for engrailed proteins of Drosophila. Mech. Dev. 53: 185-195

Sanicola, M., et al. (1995). Drawing a stripe in Drosophila imaginal disks: negative regulation of decapentaplegic and patched expression by engrailed. Genetics 139: 745-756

Sanson, B., et al. (1999). Engrailed and Hedgehog make the range of Wingless asymmetric in Drosophila embryos. Cell 98: 207-216

Satijn, D. P. and Otte, A. P. (1999). RING1 interacts with multiple Polycomb-group proteins and displays tumorigenic activity. Mol. Cell. Biol. 19(1): 57-68

Saueressig, H., Burrill, J. and Goulding, M. (1999). Engrailed-1 and Netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126: 4201-4212

Schmidt-Ott, U. and Technau, G. M. (1992). Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116: 111-25

Scholpp, S., Lohs, C. and Brand, M. (2003). Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130: 4881-4893. 12917294

Schuettengruber B., et al. (2009). Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLOS Biology 7: 0146-0146. PubMed Citation: 19143474

Schwartz, C., Locke, J., Nishida, C. and Kornberg,T. B. (1995). Analysis of cubitus interruptus regulation in Drosophila embryos and imaginal disks. Development 121: 1625-1635

Seaver, E. C. and Shankland, M. (2001). Establishment of segment polarity in the ectoderm of the leech Helobdella. Development 128: 1629-1641. 11290301

Serrano, N., et al. (1995). polyhomeotic appears to be a target of engrailed regulation in Drosophila. Development 121: 1691

Serrano, N., Brock, H. W. and Maschat, F. (1997). ß3-tubulin is directly repressed by the engrailed protein in Drosophila. Development 124(13): 2527-2536

Serrano, N. and Maschat, F. (1998). Molecular mechanism of polyhomeotic activation by Engrailed. EMBO J. 17(13): 3704-3713.

Sgaier, S. K., et al. (2007). Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development 134(12): 2325-35. Medline abstract: 17537797

Shinga, J., et al. (2001). Early patterning of the prospective midbrain-hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos. Mech. Dev. 109(2): 225-39. 11731236

Seibert, J. and Urbach, R. (2010). Role of en and novel interactions between msh, ind, and vnd in dorsoventral patterning of the Drosophila brain and ventral nerve cord. Dev. Biol. 346(2): 332-45. PubMed Citation: 20673828

Siegfried, E. L., Chou. T. B. and Perrimon, N. (1992). wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71: 1167-79. PubMed Citation: 1335365

Siegfried, E. L., Wilder, E. and Perrimon, N. (1994). Components of wingless signalling in Drosophila. Nature 367: 76-80. PubMed Citation: 8107779

Siegler, M. V. and (1999). Engrailed negatively regulates the expression of cell adhesion molecules Connectin and Neuroglian in embryonic Drosophila nervous system. Neuron 22(2): 265-76. PubMed Citation: 10069333

Simon, H. H., et al. (2001). Fate of midbrain dopaminergic neurons controlled by the Engrailed genes. J. Neurosci. 21(9): 3126-3134. 11312297

Simonds, A. J., et al. (1995). Distinguishable functions for engrailed and invected in anterior-posterior patterning in the Drosophila wing. Nature 376: 424-427. PubMed Citation: 7630417

Smith, S. T. and Jaynes, J. B. (1996). A conserved region of Engrailed, shared among all en-, gsc-, Nk1-, Nk2- and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122(10): 3141-3150. PubMed Citation: 8898227

Solano, P. J., et al. (2003). Genome-wide identification of in vivo Drosophila Engrailed-binding DNA fragments and related target genes. Development 130: 1243-1254. 12588842

Song, D. L., et al. (1996). Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development 122: 627-635. PubMed Citation: 8625814

Strigini, M. and Cohen, S. M. (1997). A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124(22): 4697-4705. PubMed Citation: 9409685

Struhl, G., Barbash, D. A. and Lawrence, P. A. (1997). Hedgehog organizes the pattern and polarity of epidermal cells in the Drosophila abdomen. Development 124 (11): 2143-2154. PubMed Citation: 9187141

Strutt, D. I. and Mlodzik, M. (1996). The regulation of hedgehog and decapentaplegic during Drosophila eye imaginal disc development. Mech. Dev. 58: 39-50

Strutt, H. and Paro, R. (1997). The polycomb group protein complex of Drosophila melanogaster has different compositions at different target genes. Mol. Cell. Biol. 17(12): 6773-6783

Suzuki, T., et al. (2001). Segmentation gene product Fushi tarazu is an LXXLL motif-dependent coactivator for orphan receptor FTZ-F1. Proc. Natl. Acad. Sci. 98: 12403-12408. 11592991

Swantek, D. and Gergen, J. P. (2004). Ftz modulates Runt-dependent activation and repression of segment-polarity gene transcription. Development 131: 2281-2290. 15102703

Svendsen, P. C., et al. (2000). The combgap locus encodes a zinc-finger protein that regulates cubitus interruptusduring limb development in Drosophila melanogaster. Development 127: 4083-4093.

Tabata, T. , Eaton, S. and Kornberg, T.B. (1992). The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6: 2635-2645

Tabata, T., et al. (1995). Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development 121: 3359-3369

Takashima, S. and Murakami, R. (2001). Regulation of pattern formation in the Drosophila hindgut by wg, hh, dpp, and en. Mech. Dev. 101: 79-90. 11231061

Tanaka, M., et al. (1998). Apical ectodermal ridge induction by the transplantation of En-1-overexpressing ectoderm in chick limb bud. Dev. Growth Differ. 40(4): 423-9

Telford, M. J. and Thomas, R. H. (1998). Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc. Natl. Acad. Sci. 95(18): 10671-5

Tolkunova, E. N., et al. (1998). Two distinct types of repression domain in Engrailed: One interacts with the Groucho corepressor and is preferentially active on integrated target genes. Mol. Cell. Biol. 18(5): 2804-2814. PubMed ID: 9566899

Treisman, J. E., Luk, A., Rubin, G. M. and Heberlein, U. (1997). eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins. Genes Dev. 11: 1949-1962

Urbach, R. and Technau, G. M. (2003). Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain. Development 130: 3607-3620. 12835379

van de Wetering, M., et al. (1997). Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88: 789-799. PubMed Citation: 9118222

van Dijk, M. A. and Murre, C. (1994). Extradenticle raises the DNA binding specificity of homeotic selector gene products. Cell 78: 617-624. PubMed Citation: 7915200

Vincent, J. P. and Lawrence, P. A. (1994). Drosophila wingless sustains engrailed expression only in adjoining cells: evidence from mosaic embryos. Cell 77: 909-15. PubMed Citation: 8004677

Wagner, G. P. (2007). The developmental genetics of homology. Nat. Rev. Genet. 8: 473-479. PubMed Citation: 17486120

Wang, L., et al. (2010). Comparative analysis of chromatin binding by Sex Comb on Midleg (SCM) and other Polycomb group repressors at a Drosophila Hox gene. Mol. Cell. Biol. 30: 2584-2584. PubMed Citation: 20351181

Watson, J. D., Wheeler, S. R., Stagg, S. B. and Crews, S. T. (2011). Drosophila hedgehog signaling and engrailed-runt mutual repression direct midline glia to alternative ensheathing and non-ensheathing fates. Development 138(7): 1285-95. PubMed Citation: 21350018

Wedeen, C. J., et al. (1997). Segmentally iterated expression of an engrailed-class gene in the embryo of an australian onychophoran. Dev. Genes Evol. 207: 282-286

Wheeler, J. C., et al. (2002). Distinct in vivo requirements for establishment versus maintenance of transcriptional repression. Nat. Genet. 32(1): 206-10. 12145660

Willett, R. T., Bayin, N. S., Lee, A. S., Krishnamurthy, A., Wojcinski, A., Lao, Z., Stephen, D., Rosello-Diez, A., Dauber-Decker, K. L., Orvis, G. D., Wu, Z., Tessier-Lavigne, M. and Joyner, A. L. (2019). Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. Elife 8. PubMed ID: 31742552

Wizenmann, A., et al. (2009). Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo. Neuron 64(3): 355-66. PubMed Citation: 19914184

Whiteley, M. and Kassis, J. A. (1997). Rescue of Drosophila engrailed mutants with a highly divergent mosquito engrailed cDNA using a homing, enhancer-trapping transposon. Development 124 (8): 1531-1541. PubMed Citation: 9108369

Wurst, W., Auerbach, A. B. and Joyner, A. L. (1994). Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120: 2065-2075. PubMed Citation: 7925010

Yoshitake, Y., et al. (1999). Misexpression of Polycomb-group proteins in Xenopus alters anterior neural development and represses neural target genes. Dev. Biol. 215(2): 375-387. PubMed Citation: 10545244

Younossi-Hartenstein, A., et al. (1996). Early neurogenesis of the Drosophila brain. J. Comp. Neur. 370: 313-329. PubMed Citation: 8799858

Zecca, M.. Basler, K., and Struhl, G. (1995). Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121: 2265-2278. PubMed Citation: 7671794

Return: engrailed References part 1/2

engrailed: Biological Overview | Evolutionary Homologs | Transcriptional regulation | Targets of activity | Protein Interactions | Developmental Biology | Effects of mutation

date revised: 25 August 2023  

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.