maleless


REFERENCES

Bhadra, U., Pal-Bhadra, M. and Birchler, J. A. (1999). Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics 152(1): 249-268. PubMed Citation: 10224258

Bone, J. R., et al. (1994). Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8 (1): 96-104. PubMed Citation: 8288132

Buelt, M. K., Glidden, B. J. and Storm, D. R. (1994). Regulation of p68 RNA helicase by calmodulin and protein kinase C. J. Biol. Chem. 269(47):29367-29370. PubMed Citation: 7525583

Capitanio, J.S., Montpetit, B. and Wozniak, R.W. (2017). Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9. Elife [Epub ahead of print]. PubMed ID: 28221134

Chuang, R. Y., et al. (1997). Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science 275(5305): 1468-1471. PubMed Citation: 9045610

de la Cruz, J., et al. (1997). The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 94(10):5201-5206. PubMed Citation: 9144215

Demakova, O. V., et al. (2003). The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma 112(3): 103-15. 14579126

Deng, L. and Shuman, S. (1998). Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev. 12: 538-546. PubMed Citation: 9472022

Franke, A., et al. (1996). Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm. Development 122 (9): 2751-2760. PubMed Citation: 8787749

Fukunaga, A., Tanaka, A, and Oishi, K. (1975). Maleless, a recessive autosomal mutant of Drosophila melanogaster that specifically kills male zygotes. Genetics 81 (1): 135-141. PubMed Citation: 812765

Gavis, E. R., et al. (1996). A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 12: 2791-2800. PubMed Citation: 8787753

Gibson, T. J. and Thompson, J. D. (1994). Detection of dsRNA-binding domains in RNA helicase A and Drosophila maleless: implications for monomeric RNA helicases. Nucleic Acids Res 22 (13): 2552-2556. PubMed Citation: 8041617

Gillespie, D. E. and Berg, C. A. (1995). Homeless is required for RNA localization in Drosophila oogenesis and encodes a new member of the DE-H family of RNA-dependent ATPases. Genes Dev 9 (20): 2495-2508. PubMed Citation: 7590230

Gorman, M., Kuroda, M. I. and Baker, B. S. (1993). Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila. Cell 72 (1): 39-49. PubMed Citation: 8422681

Gu, W., Szauter, P. and Lucchesi, J. C. (1998). Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev. Genet. 22(1): 56-64. 9816055

Gu, W., et al. (2000). Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J. 19: 5202-5211

Hansen, S. K., et al. (1997). Transcription properties of a cell type-specific TATA-binding protein, TRF. Cell 91(1): 71-83

Hiebert, J. C. and Birchler, J. A. (1994). Effects of the maleless mutation on X and autosomal gene expression in Drosophila melanogaster. Genetics 136 (3): 913-926

Hilfiker, A., et al. (1997). mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16(8): 2054-2060

Hurd, D. D., Stern, M. and Saxton, W. M. (1996). Mutation of the axonal transport motor kinesin enhances paralytic and suppresses Shaker in Drosophila. Genetics 142 (1): 195-204

Ilik, I. A., Quinn, J. J., Georgiev, P., Tavares-Cadete, F., Maticzka, D., Toscano, S., Wan, Y., Spitale, R. C., Luscombe, N., Backofen, R., Chang, H. Y. and Akhtar, A. (2013). Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51: 156-173. PubMed ID: 23870142

Kageyama, Y., et al. (2001). Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. EMBO J. 20: 2236-2245. 11331589

Kelley, R. L., et al. (1995). Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81: 867-877

Kelley, R. L., et al. (1997). Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387 (6629): 195-199

Kennedy, C. F. and Berget, S. M. (1997). Pyrimidine tracts between the 5' splice site and branch point facilitate splicing and recognition of a small Drosophila intron. Mol. Cell. Biol. 17(5): 2774-80. 9111348

Kennedy, C. F., Kramer, A. and Berget, S. M. (1998). A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point. Mol. Cell. Biol. 18(9): 5425-34. 9710626

Kim, S. H. and Lin, R. J. (1996). Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol. Cell. Biol. 16(12):6810-6819

Kotlikova, I. V., et al. (2006). The Drosophila dosage compensation complex binds to polytene chromosomes independently of developmental changes in transcription. Genetics 172(2): 963-74. 16079233

Koya, S. K. and Meller, V. H. (2015). Modulation of heterochromatin by male specific lethal proteins and roX RNA in Drosophila melanogaster males. PLoS One 10: e0140259. PubMed ID: 26468879

Kuroda, M. I., et al. (1991). The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66 (5): 935-947

Lee, C. G. and Hurwitz, J. (1993). Human RNA helicase A is homologous to the maleless protein of Drosophila. J. Biol. Chem. 268 (22): 16822-16830

Lee, C.-G., et al. (1997). The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J. 16: 2671-81

Lee, C. G., et al. (1998a). Molecular analysis of the cDNA and genomic DNA encoding mouse RNA helicase A. Genomics 47(3): 365-71

Lee, C. G., et al. (1998b). RNA helicase A is essential for normal gastrulation. Proc. Natl. Acad. Sci. 95(23): 13709-13

Lee, C. G., Reichman, T. W., Baik, T. and Mathews, M. B. (2004). MLE functions as a transcriptional regulator of the roX2 gene. J. Biol. Chem. 279(46): 47740-5. 15358781

Liang, L., Diehl-Jones, W. and Lasko, P. (1994). Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120: 1201-1211

Liang, W. Q., Clark, J. A. and Fournier, M. J. (1997). The rRNA-processing function of the yeast U14 small nucleolar RNA can be rescued by a conserved RNA helicase-like protein. Mol. Cell. Biol. 17:4124-4132

Maenner, S., Muller, M., Frohlich, J., Langer, D. and Becker, P. B. (2013). ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell 51: 174-184. PubMed ID: 23870143

Marcand, S., et al. (1996). Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein. Genes Dev. 10:1297-1309

Methot, N., et al. (1996). In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif. RNA 2(1):38-50

Meller, V. H., et al. (2000). Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr. Biol. 10: 136-143

Meller, V. H. (2003). Initiation of dosage compensation in Drosophila embryos depends on expression of the roX RNAs. Mech. Dev. 120: 759-767. 12915227

Militti, C., Maenner, S., Becker, P. B. and Gebauer, F. (2014). UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation. Nat Commun 5: 4762. PubMed ID: 25158899

Nakajima, T., et al. (1997). RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90(6): 1107-1112

Nikolenko, J. V., Kurshakova, M. M. and Krasnov, A. N. (2019). Multifunctional ENY2 protein interacts with RNA helicase MLE. Dokl Biochem Biophys 489(1): 407-410. PubMed ID: 32130612

O'Day C. L., Chavanikamannil, F. and Abelson, J. (1996). 18S rRNA processing requires the RNA helicase-like protein Rrp3. Nucleic Acids Res 24(16):3201-3207

Oh, H., Park, Y. and Kuroda, M. I. (2003). Local spreading of MSL complexes from roX genes on the Drosophila X chromosome. Genes Dev. 17: 1334-1339. 12782651

Prabu, J. R., Muller, M., Thomae, A. W., Schussler, S., Bonneau, F., Becker, P. B. and Conti, E. (2015). Structure of the RNA helicase MLE reveals the molecular mechanisms for uridine specificity and RNA-ATP coupling. Mol Cell 60: 487-499. PubMed ID: 26545078

Rastelli, L. and Kuroda, M. I. (1998). An analysis of maleless and histone H4 acetylation in Drosophila melanogaster spermatogenesis. Mech. Dev. 71(1-2): 107-117

Reddy, T. R., Tang, H., Xu, W. and Wong-Staal, F. (2000), Sam68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA. Oncogene 19(32): 3570-5. 10951562

Reenan, R. A., Hanrahan, C. A. and Ganetzky, B. (2000). The mlenapts RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron 25: 139-149

Richter, L., Bone, J. R. and Kuroda, M. I. (1996). RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1 (3): 325-336

Ruiz, M. F., et al. (2000). Evolution of dosage compensation in diptera. The gene maleless implements dosage compensation in Drosophila (brachycera suborder) but its homolog in Sciara (nematocera suborder) appears to play no role in dosage compensation. Genetics 156(4): 1853-65. 11102379

Scott, M. J., Pan, L. L., Cleland, S. B., Knox, A. L. and Heinrich, J. (2000). MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J. 19(1): 144-55. 10619853

Sukegawa, J. and Blobel, G. (1995). A putative mammalian RNA helicase with an arginine-serine-rich domain colocalizes with a splicing factor. J. Biol. Chem. 270(26):15702-15706

Tanaka, A., Fukunaga, A. and Oishi, K. (1976). Studies on the sex-specific lethals of Drosophila melanogaster. II. Further studies on a male-specific lethal gene, maleless. Genetics 84 (2): 257-266.

Weaver, P. L., Sun, C. and Chang, T. H. (1997). Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3. Mol. Cell. Biol. 17(3):1354-1365

Valdez, B. C., et al. (1998). RNA-unwinding and RNA-folding activities of RNA helicase II/Gu--two activities in separate domains of the same protein. Eur. J. Biochem. 250(3): 800-7.

Veneti, Z., Bentley, J. K., Koana, T., Braig, H. R. and Hurst, G. D. (2005). A functional dosage compensation complex required for male killing in Drosophila. Science 307(5714): 1461-3. 15746426

Worringer, K. A., Chu, F. and Panning, B. (2008). The zinc finger protein Zn72D and DEAD box helicase Belle interact and control maleless mRNA and protein levels. BMC Mol. Biol. 10: 33. PubMed Citation: 19386123

Wu, C.F., Ganetzky, B., Jan, L.Y., and Jan, Y.N. (1978). A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc. Natl. Acad. Sci. 75: 4047-4051

Xie, Z. and Price, D. H. (1996). Purification of an RNA polymerase II transcript release factor from Drosophila. J. Biol. Chem. 271: 11043-11046

Zhang, S., Maacke, H. and Grosse, F. (1995). Molecular cloning of the gene encoding nuclear DNA helicase II. A bovine homologue of human RNA helicase A and Drosophila Mle protein. J Biol Chem 270 (27): 16422-16427

Zhang, S. and Grosse, F. (1997). Domain structure of human nuclear DNA helicase II (RNA helicase A). J. Biol. Chem. 272(17): 11487-94

Zhang, S., and Grosse, F. (2004). Multiple functions of nuclear DNA helicase II (RNA helicase A) in nucleic acid metabolism. Acta Biochim. Biophys. Sin. (Shanghai) 36: 177-183. 15202501


maleless: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation

date revised: 17 August 2020
 

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.