Abdel-Majid, R. M., et al. (1998). Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat. Genet. 19(3): 289-291. PubMed Citation: 9662407

Akalal, D. B., Wilson, C. F., Zong, L., Tanaka, N. K., Ito, K. and Davis, R. L. (2006). Roles for Drosophila mushroom body neurons in olfactory learning and memory. Learn Mem. 13(5): 659-68. Medline abstract: 16980542

Anjard, C., Söderbom, F. and Loomis, W. F. (2001). Requirements for the adenylyl cyclases in the development of Dictyostelium. Development 128: 3649-3654. 11566867

Antoni, F. A., et al. (1998). Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J.Neurosci. 18(23): 9650-9661. PubMed Citation: 9822726

Bauman, A. L., et al. (2006). Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol. Cell 23(6): 925-31. 16973443

Bellen, H. J., et al. (1987). Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis. Dev. Biol. 121: 432-44. PubMed Citation: 3034702

Berke, B and Wu, C. F. (2002). Regional calcium regulation within cultured Drosophila neurons: Effects of altered cAMP metabolism by the learning mutations dunce and rutabaga. J. Neurosci. 22(11): 4437-4447. 12040051

Bhattacharya, A., Gu, G.G., Singh, S. (1999). Modulation of dihydropyridine-sensitive calcium channels in Drosophila by a cAMP-mediated pathway. J. Neurobiol. 39(4): 491-500. PubMed Citation: 10380071

Blum, A. L., Li, W., Cressy, M., Dubnau, J. (2009). Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol 19: 1341-1350. PubMed ID: 19646879

Boto, T., Louis, T., Jindachomthong, K., Jalink, K. and Tomchik, S. M. (2014). Dopaminergic Modulation of cAMP Drives Nonlinear Plasticity across the Drosophila Mushroom Body Lobes. Curr Biol 24(8): 822-31. PubMed ID: 24684937

Brembs, B. and Heisenberg, M (2000). The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learn. Mem. 7: 104-115. 10753977

Buchanan, M. E. and Davis, R. L. (2010). A distinct set of Drosophila brain neurons required for neurofibromatosis type 1-dependent learning and memory. J. Neurosci. 28: 10135-10143. PubMed Citation: 20668197

Cagampang, F. R., et al. (1998). Circadian changes of type II adenylyl cyclase mRNA in the rat suprachiasmatic nuclei. Brain Res. 810(1-2): 279-82. PubMed Citation: 9813369

Cann, M. J. and Levin, L. R. (2000a). Restricted expression of a truncated adenylyl cyclase in the cephalic furrow of Drosophila melanogaster. Dev. Genes Evol. 210: 34-40. PubMed Citation: 10603085

Cann, M. J., Chung, E. and Levin, L. R. (2000b). A new family of adenylyl cyclase genes in the male germline of Drosophila melanogaster. Dev. Genes Evol. 210: 200-206. PubMed Citation: 11180822

Chakrabarti, S., et al. (1998). Chronic morphine augments G(beta)(gamma)/Gs(alpha) stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol. Pharmacol. 54(4): 655-62. PubMed Citation: 9765508

Chang, D. J., et al. (2000). Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in Aplysia sensory neurons. Proc. Natl. Acad. Sci. 97: 1829-1834. PubMed Citation: 10677541

Chavis, P., et al. (1998). Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells. Neuron 20(4): 773-781. PubMed Citation: 9581768

Cheung, U. S., et al. (1999). Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system. J. Neurobiol. 40(1): 1-13. PubMed Citation: 10398067

Chhatwal, J. P., Myers, K. M., Ressler, K. J. and Davis, M. (2005). Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J. Neurosci. 25: 502-506. PubMed Citation: 15647495

Cho, W., Heberlein, U. and Wolf, F. W. (2004). Habituation of an odorant-induced startle response in Drosophila. Genes Brain Behav. 3(3): 127-37. 15140008

Chyb, S., et al. (1999). Modulation of the light response by cAMP in Drosophila photoreceptors. J. Neurosci. 19(20): 8799-8807. PubMed Citation: 10516299

Col, J. al., et al. (2007). Adenylyl cyclase-dependent axonal targeting in the olfactory system. Development 134: 2481-2489. Medline abstract: 17537788

Dalton, R. P., Lyons, D. B. and Lomvardas, S. (2013). Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155: 321-332. PubMed ID: 24120133

Das, S., et al. (2011). Plasticity of local GABAergic interneurons drives olfactory habituation. Proc. Natl. Acad. Sci. 108(36): E646-54. PubMed Citation: 21795607

Davis, R. L., et al. (1995). The cyclic AMP system and Drosophila learning. Mol. Cell. Biochem. 149-150: 271-278. PubMed Citation: 8569740

Davis, R. L., et al. (1996). Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 76: 299-317. PubMed Citation: 8618959

Davis, R. L. (2011). Traces of Drosophila memory. Neuron 70: 8-19. PubMed ID: 21482352

Del Pino, F., Jara, C., Pino, L. and Godoy-Herrera, R. (2014). The neuro-ecology of Drosophila pupation behavior. PLoS One 9: e102159. PubMed ID: 25033294

Dessauer, C. W. and Gilman, A. G. (1997). The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of p-site inhibition. J. Biol. Chem. 272: 27787-27795. PubMed Citation: 9346923

Donlea, J. M., Ramanan, N. and Shaw, P. J. (2009). Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324(5923): 105-8. PubMed Citation: 19342592

Engel, J. E. and Wu, C. F. (1996). Altered habituation of an identified escape circuit in Drosophila memory mutants. J. Neurosci. 16: 3486-3499. PubMed Citation: 8627381

Etkin, A., et al. (2006). A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50(1): 127-43. PubMed Citation: 16600861

Fagnon, D.D. and Tuchek, J.M. (1995). The biochemistry of learning and memory. Molecular and Cellular Biochemistry 149/150: 279-286. PubMed Citation: 8569741

Feany, M. B. (1990). Rescue of the learning defect in dunce, a Drosophila learning mutant, by an allele of rutabaga, a second learning mutant. Proc Natl Acad Sci 87: 2795-9. PubMed Citation: 2157213

Ferris, J., Ge, H., Liu, L. and Roman, G. (2006). G(o) signaling is required for Drosophila associative learning. Nat. Neurosci. 9(8): 1036-40. 16845387

Foltenyi, K., Greenspan, R. J. and Newport, J. W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neurosci. 10: 1160-1167. PubMed Citation: 17694052

Ganguly, A. and Lee, D. (2013). Suppression of inhibitory GABAergic transmission by cAMP signaling pathway: alterations in learning and memory mutants. Eur J Neurosci 37: 1383-1393. PubMed ID: 23387411

Ganguly-Fitzgerald, I., Donlea, J. and Shaw, P. J. (2006). Waking experience affects sleep need in Drosophila. Science 313(5794): 1775-81. PubMed Citation: 16990546

Gao, M., et al. (1998). Increased expression of adenylylcyclase type VI proportionately increases beta-adrenergic receptor-stimulated production of cAMP in neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. 95(3): 1038-1043. PubMed Citation: 9448281

Gerdjikov, T. V., et al. (2008). Hippocampal alpha 5 subunit-containing GABA A receptors are involved in the development of the latent inhibition effect. Neurobiol. Learn. Mem. 89: 87-94. PubMed Citation: 17638582

Gervasi, N., Tchenio, P., Preat, T. (2010). PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron 65: 516-529. PubMed ID: 20188656

Gu, C., Sorkin, A. and Cooper, D. M. F. (2001). Persistent interactions between the two transmembrane clusters dictate the targeting and functional assembly of adenylyl cyclase. Curr. Bio. 11: 185-190. 11231154

Guan, Z., Buhl, L. K., Quinn, W. G. and Littleton, J. T. (2011). Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants. Learn Mem 18: 191-206. PubMed ID: 21422168

Guillou, J. L., Rose, G. M. and Cooper, D. M. F. (1999). Differential activation of adenylyl cyclases by spatial and procedural learning. J. Neurosci. 19(14): 6183-6190

Guo, H. F., et al. (1997). Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276(5313): 795-8

Guo, H.-F., et al. (2000). A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403: 895-898

Han, P. L., et al. (1992). Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9: 619-27

Han, K. A., et al. (1996). DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16: 1127-1135

Hannan, F., et al. (2006). Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Human Mol. Genet. 15(7): 1087-1098. 16513807

Harris, J. A. and Westbrook, R. F. (1998). Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology 140: 105-115. PubMed Citation: 9862409

Hendricks, J. C., et al. (2001). A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat. Neurosci. 4: 1108-1115. 11687816

Hess, K. C., et al. (2005). The 'soluble' adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell 9(2): 249-59. 16054031

Ho, I. S., et al. (2007). Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J. Neurosci. 27: 6852-6857. PubMed Citation: 17581973

Horner, K., et al. (2003). Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Dev. Biol. 258: 385-396. 12798295

Iiri, T., et al. (1999). A Gsalpha mutant designed to inhibit receptor signaling through Gs. Proc. Natl. Acad. Sci. 96(2): 499-504

Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G., Deloulme, J. C., Chan, G., and Storm, D. R. (1998). Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21: 869-883

Ishimoto, H., Wang, Z., Rao, Y., Wu, C. F. and Kitamoto, T. (2013). Novel role for ecdysone in Drosophila conditioned behavior: Linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain. PLoS Genet 9: e1003843. PubMed ID: 24130506

Kim, M.-J. and Han, J.-K. (1999). The involvement of cAMP signaling pathway in axis specification in Xenopus embryos. Mech. Dev. 89: 55-64.

Kim, Y. C., Lee, H. G. and Han, K. A. (2007). D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. Neurosci. 27: 7640-7647. PubMed Citation: 17634358

Knöll, B., et al. (2006). Serum response factor controls neuronal circuit assembly in the hippocampus. Nat. Neurosci. 9(2): 195-204. PubMed Citation: 16415869

Kriebel, P. W., Barr, V. A., and Parent, C. A. (2003). Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 112: 549-560. 12600317

Kuromi, H. and Kidokoro, Y. (2000). Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron 27: 133-143

Larkin, A., et al. (2010). Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. Learn Mem. 17(12): 645-53. PubMed Citation: 21106688

Levin, L. R., et al. (1992). The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell 68: 479-489

Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M. and Liu, L. (2006). Distinct memory traces for two visual features in the Drosophila brain. Nature 439(7076): 551-6. 16452971

Liu, L., Wolf, R., Ernst, R. and Heisenberg, M. (1999). Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746): 753-6

Liu, X., Krause, W. C. and Davis, R. L. (2007). GABAA receptor RDL inhibits Drosophila olfactory associative learning. Neuron 56: 1090-1102. PubMed ID: 18093529

Liu, X. and Davis, R. L. (2009a). The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat. Neurosci. 12: 53-59. PubMed Citation: 19043409

Liu, X., Buchanan, M. E., Han, K. A. and Davis, R. L. (2009b). The GABAA receptor RDL suppresses the conditioned stimulus pathway for olfactory learning. J. Neurosci. 29(5): 1573-9. PubMed Citation: 19193904

Louis, T., Stahl, A., Boto, T. and Tomchik, S. M. (2018). Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning. Proc Natl Acad Sci U S A 115(3): E448-e457. PubMed ID: 29284750

Madalan, A., et al. (2011). G(o) activation is required for both appetitive and aversive memory acquisition in Drosophila. Learn Mem. 19(1): 26-34. PubMed Citation: 22190729

Makhinson, M., et al. (1999). Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/Calmodulin-dependent Kinase II autophosphorylation. J. Neurosci. 19(7): 2500-2510. PubMed Citation: 10087064

Mao, Z, Roman, G., Zong, L. and Davis, R. L (2004). Pharmacogenetic rescue in time and space of the rutabaga memory impairment by using Gene-Switch. Proc. Natl. Acad. Sci. 101: 198-203. Medline abstract: 14684832

Mao, Z., Davis, R. L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 3: 5. PubMed ID: 19597562

Martin, J. R., Ernst, R. and Heisenberg, M. (1998). Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Mem 5(1-2): 179-91. PubMed Citation: 10454382

Meima, M. E. and Schaap, P. (1999). Fingerprinting of adenylyl cyclase activities during Dictyostelium development indicates a dominant role for adenylyl cyclase B in terminal differentiation. Dev. Biol. 212(1): 182-190. PubMed Citation: 10419694

Moon, C., et al. (1998). Calcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons. J. Neurosci. 18(9): 3195-3205. PubMed Citation: 9547228

Moore, M. S., et al. (1998). Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93: 997-1007. PubMed Citation: 9635429

Nguyen, P. V. and Kandel, E. R. (1996). A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16: 3189-3198. PubMed Citation: 8627357

Nighorn, Qiu, Y., and Davis, R. L. (1994). Progress in understanding the Drosophila dnc locus. Comp Biochem Physiol Biochem Mol Biol 108: 1-9. PubMed Citation: 8205385

Olianas, M. C. and Onali, P. (1999). Mediation by G protein betagamma subunits of the opioid stimulation of adenylyl cyclase activity in rat olfactory bulb. Biochem. Pharmacol. 57(6): 649-52. PubMed Citation: 10037449

Olsen, S. R. and Wilson, R. I. (2008). Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452: 956-960. PubMed ID: 18344978

Ostrowski, D., Kahsai, L., Kramer, E. F., Knutson, P. and Zars, T. (2015). Place memory retention in Drosophila. Neurobiol Learn Mem 123: 217-224. PubMed ID: 26143995

Otsuka, H. and Van Haastert, P. J. M. (1998). A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression. Genes Dev. 12: 1738-1748

Pan, Y., Zhou, Y., Guo, C., Gong, H., Gong, Z. and Liu, L. (2009). Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem. 16(5): 289-95. PubMed Citation: 19389914

Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I. and Laurent, G. (2002). Oscillations and sparsening of odor representations in the mushroom body. Science 297: 359-365. PubMed ID: 12130775

Pineda, V. V., et al. (2004). Removal of Gialpha1 constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron 41: 153-163. 14715142

Pitman, J. L., Huetteroth, W., Burke, C. J., Krashes, M. J., Lai, S. L., Lee, T., Waddell, S. (2011). A pair of inhibitory neurons are required to sustain labile memory in the Drosophila mushroom body. Curr Biol 21: 855-861. PubMed ID: 21530258

Qin, H., Cressy, M., Li, W., Coravos, J. S., Izzi, S. A. and Dubnau, J. (2012). Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Curr. Biol. 22(7): 608-14. PubMed Citation: 22425153

Quinn, W.G., Harris, W.A. and Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci 71: 708-712

Ramanan, N., et al. (2005). SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat. Neurosci. 8(6): 759-67. PubMed Citation: 15880109

Richlitzki, A., Latour, P. and Schwarzel, M. (2017). Null EPAC mutants reveal a sequential order of versatile cAMP effects during Drosophila aversive odor learning. Learn Mem 24(5): 210-215. PubMed ID: 28416632

Riemensperger, T., Voller, T., Stock, P., Buchner, E. and Fiala, A. (2005). Punishment prediction by dopaminergic neurons in Drosophila. Curr. Biol. 15: 1953-1960. PubMed Citation: 16271874

Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N. K., Ito, K. and Vosshall, L. B. (2007). Activity-dependent plasticity in an olfactory circuit. Neuron 56: 838-850. PubMed Citation: 18054860

Scholich, K., et al. (1999). Facilitation of signal onset and termination by Adenylyl cyclase. Science 283(5406): 1328-1331. PubMed Citation: 10037603

Scheunemann, L., Jost, E., Richlitzki, A., Day, J. P., Sebastian, S., Thum, A. S., Efetova, M., Davies, S. A. and Schwarzel, M. (2012). Consolidated and labile odor memory are separately encoded within the Drosophila brain. J Neurosci 32: 17163-17171. PubMed ID: 23197709

Scheunemann, L., Skroblin, P., Hundsrucker, C., Klussmann, E., Efetova, M. and Schwarzel, M. (2013). AKAPs act in a two-step mechanism of memory acquisition. J Neurosci 33: 17422-17428. PubMed ID: 24174675

Semelidou, O., Acevedo, S. F. and Skoulakis, E. M. (2018). Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in Drosophila. Elife 7 pii: e39569. PubMed ID: 30576281

Shima, F., et al. (1997). Effect of association with Adenylyl cyclase-associated protein on the interaction of yeast Adenylyl cyclase with Ras protein. Mol. Cell. Biol. 17: 1057-64. PubMed Citation: 9032232

Shuai, Y., Lu, B., Hu, Y., Wang, L., Sun, K. and Zhong, Y. (2010). Forgetting is regulated through Rac activity in Drosophila. Cell 140: 579-589. PubMed ID: 20178749

Shuai, Y., Hu, Y., Qin, H., Campbell, R. A. and Zhong, Y. (2011). Distinct molecular underpinnings of Drosophila olfactory trace conditioning. Proc. Natl. Acad. Sci. 108(50): 20201-6. PubMed Citation: 22123966

Sindreu, C. B., Scheiner, Z. S. and Storm, D. R. (2007). Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53(1): 79-89. Medline abstract: 17196532

Singh, K., Ju, J. Y., Walsh, M. B., DiIorio, M. A. and Hart, A. C. (2014). Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 37(9):1439-51 PubMed ID: 25142568

Skoulakis, E. M., Kalderon, D. and Davis, R. L. (1993). Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11: 197-208. PubMed Citation: 8352940

Söderbom, F., et al. (1999). An adenylyl cyclase that functions during late development of Dictyostelium. Development 126: 5463-5471. PubMed Citation: 10556070

Storm, D. R., et al. (1998). Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20: 1199-1210. PubMed Citation: 9655507

Suzuki, N., et al. (1990). Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc. Natl. Acad. Sci. 87(22): 8711-5. PubMed Citation: 2247439

Tomchik, S. M., Davis, R. L. (2009). Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron 64: 510-521. PubMed ID: 19945393

Trannoy, S., Redt-Clouet, C., Dura, J. M., Preat, T. (2011). Parallel processing of appetitive short- and long-term memories in Drosophila. Curr Biol 21: 1647-1653. PubMed ID: 21962716

Ueda, A. and Wu, C. F. (2012). Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations. J. Neurogenet. 26(1): 64-81. PubMed Citation: 22380612

Venkatesh, K., et al. (2001). Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signaling pathways regulate larval molting in Drosophila. Genetics 158: 309-318. 11333238

Villacres, E. C., et al. (1995). Developmentally expressed Ca(2+)-sensitive adenylyl cyclase activity is disrupted in the brains of type I adenylyl cyclase mutant mice. J. Biol. Chem. 270: 14352-14357. PubMed Citation: 7782295

Wang, B., Shaulsky, G. and Kuspa, A. (1999). Multiple developmental roles for CRAC, a cytosolic regulator of adenylyl cyclase. Dev. Biol. 208(1): 1-13. PubMed Citation: 10075837

Wayman, G. A., et al. (1994). Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo. J. Biol. Chem. 269: 25400-5. PubMed Citation: 7929237

Wei, F., et al. (2002). Genetic elimination of behavioral sensitization in mice lacking Calmodulin-stimulated adenylyl cyclases. Neuron 36: 713-726. 12441059

Wei, J., et al. (1998). Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in neurons: a mechanism for attenuation of olfactory signals. Neuron 21(3): 495-504. PubMed Citation: 9768837

Wenzel-Seifert. K., et al. (1998). Restricting mobility of Gsalpha relative to the beta2-adrenoceptor enhances adenylate cyclase activity by reducing Gsalpha GTPase activity. Biochem J. 334 (Pt 3): 519-24. PubMed Citation: 9729456

Wilson, R. I. and Laurent, G. (2005). Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25: 9069-9079. PubMed ID: 16207866

Wong, S. T., et al. (1999). Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23: 787-798. PubMed Citation: 10482244

Xia, X. G., et al. (1991). Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron 6: 431-43. PubMed Citation: 2001286

Yan, L., et al. (2007). Type 5 Adenylyl cyclase disruption increases longevity and protects against stress. Cell 130: 247-258. Medline abstract: 17662940

Yasuyama, K., Meinertzhagen, I. A. and Schurmann, F. W. (2002). Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445: 211-226. PubMed ID: 11920702

Yovell, Y., et al. (1992). A quantitative study of the Ca2+/calmodulin sensitivity of adenylyl cyclase in Aplysia, Drosophila, and rat. J. Neurochem. 59: 1736-44

Yuan, N. and Lee, D. (2007). Suppression of excitatory cholinergic synaptic transmission by Drosophila dopamine D1-like receptors. Eur J Neurosci 26: 2417-2427. PubMed ID: 17986026

Zars, T., Wolf, R., Davis, R. and Heisenberg, M. (2000). Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram. Learn Mem 7: 18-31. PubMed ID: 10706599

Zars, T., Fischer, M., Schulz, R., Heisenberg, M. (2000b). Localization of a short-term memory in Drosophila. Science 288: 672-675. PubMed ID: 10784450

Zhang, G., et al. (1997) Structure of the adenylyl cyclase catalytic core. Nature 6: 903-908. 9069282

Zhang, S., Roman, G. (2013). Presynaptic inhibition of gamma lobe neurons is required for olfactory learning in Drosophila. Curr Biol 23: 2519-2527. PubMed ID: 24291093

Zhang, Y., Liu, G., Yan, J., Zhang, Y., Li, B. and Cai, D. (2015). Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis. Nat Commun 6: 6704. PubMed ID: 25848677

Zhao, M.-L., and Wu, C.-F. (1997). Alterations in frequency coding and activity dependence of excitability in cultured neurons of Drosophila memory mutants. J. Neurosci. 15: 2187-2199

Zhong, Y. and Wu, C. F. (1991). Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251: 198-201

Zhong, Y., Budnik, V. and Wu, C. F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. J Neurosci 12: 644-51

Zhong, Y. and Wu, C. F. (1993). Differential modulation of potassium currents by cAMP and its long-term and short-term effects: dunce and rutabaga mutants of Drosophila. J Neurogenet 9: 15-27

Zhong, Y. (1995a). Mediation of PACAP-like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways in Drosophila. Nature 375(6532): 588-92

Zhong, Y. and Pena, L. A. (1995b). A novel synaptic transmission mediated by a PACAP-like neuropeptide in Drosophila. Neuron 14(3): 527-36

Zhong, Y. and Wu, C.-F. (2004). Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila. J. Neurosci. 24(6): 1439-1445. 14960616

rutabaga: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation

date revised: 26 December 2018

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.