string


REFERENCES

Abraham, R.T. and Tibbetts, R.S. (2005). Guiding ATM to broken DNA. Science 308: 551-554. PubMed Citation: 15790808

Akiyama-Oda, Y., et al. (2000). Distinct mechanisms triggering glial differentiation in Drosophila thoracic and abdominal neuroblasts 6-4. Dev. Biol. 222: 429-439. PubMed Citation: 10837130

Apone, L. M., Virbasius, C. M., Reese, J. C. and Green, M. R. (1996). Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev. 10(18): 2368-80. Medline abstract: 8824595

Ashcroft, N. R., et al. (1999). RNA-mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev. Biol. 206(1): 15-32. PubMed Citation: 9918692

Ashraf, S. I. and Ip, Y. T. (2001). The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila. Development 128: 4757-4767. 11731456

Bao, Z., Zhao, Z., Boyle, T. J., Murray, J. I. and Waterston, R. H. (2008). Control of cell cycle timing during C. elegans embryogenesis. Dev. Biol. 318(1): 65-72. PubMed Citation: 18430415

Blasina, A., et al. (1999). A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 9(1): 1-10. PubMed Citation: 9889122

Carmena, A., et al. (1998). Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev. 12(24): 3910-3922. PubMed Citation: 9869644

Chang, J., et al. (2000). The CNS midline cells coordinate proper cell cycle progression and identity determination of the Drosophila ventral neuroectoderm. Dev. Bio. 227: 307-323. PubMed Citation: 11071757

Chaturvedi, P., et al. (2000). Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18(28): 4047-54. 10435585

Chen, F., et al. (2007). Multiple protein phosphatases are required for mitosis in Drosophila. Curr. Biol. 17: 293-303. Medline abstract: 17306545

Chen, L., Liu, T. H. and Walworth, N. C. (1999). Association of chk1 with 14-3-3 proteins is stimulated by DNA damage. Genes Dev. 13(6): 675-85. PubMed Citation: 10090724

Choksi, S. P., et al. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev. Cell 11(6): 775-89. Medline abstract: 17141154

Clucas, C., et al. (2002). Oncogenic potential of a C.elegans cdc25 gene is demonstrated by a gain-of-function allele. EMBO J. 21: 665-674. 11847114

Collis, S. J., et al. (2007). HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat. Cell. Biol. 9(4): 391-401. Medline abstract: 17384638

Crenshaw, D. G., et al. (1998). The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 17(5): 1315-27. PubMed Citation: 9482729

Crozatier, M., et al. (1996). collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr. Biol. 6(6): 707-718. PubMed Citation: 8793297

Crozatier, M., et al. (1999). Head versus trunk patterning in the Drosophila embryo; collier requirement for formation of the intercalary segment. Development 126: 4385-4394. PubMed Citation: 10477305

Davidson, G., et al. (2009). Cell cycle control of wnt receptor activation. Dev. Cell 17(6): 788-99. PubMed Citation: 20059949

Deng, W.-M. Althauser, C. and Ruohola-Baker, H. (2001). Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128: 4737-4746. 11731454

Di Talia, S. and Wieschaus, E. F. (2012). Short-term integration of Cdc25 dynamics controls mitotic entry during Drosophila gastrulation. Dev. Cell 22(4): 763-74. PubMed Citation: 22483720

Djabrayan, N. J., Cruz, J., de Miguel, C., Franch-Marro, X. and Casanova, J. (2014). Specification of differentiated adult progenitors via inhibition of endocycle entry in the Drosophila trachea. Cell Rep 9: 859-865. PubMed ID: 25437542

Dong, X., et al., (1997). Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A. Genes Dev. 11: 94-105

Donzelli, M., et al. (2002). Dual mode of degradation of Cdc25 A phosphatase. EMBO J. 21: 4875-4884. 12234927

Dunphy, E. L., Johnson, T., Auerbach, S. S. and Wang, E. H. (2000). Requirement for TAF(II)250 acetyltransferase activity in cell cycle progression. Mol. Cell. Biol. 20(4): 1134-9. Medline abstract: 10648598

Duronio, R. J. and O'Farrell, P. H. (1994). Developmental control of a G1-S transcriptional program in Drosophila. Development 120: 1503-1515

Edgar, B. A. and O'Farrell, P. H. (1989). Genetic control of cell division patterns in the Drosophila embryo. Cell 57: 177-197

Edgar, B. A. and O'Farrell, P. H. (1990). The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 62: 469-80

Edgar, B. A., Lehman, D. A. and O'Farrell, P. H. (1994a). Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle. Development 120: 3131-3143

Edgar, B. A., et al. (1994b). Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev 8: 440-52

Edgar, B. A. and Datar, S. A. (1996). Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program. Genes Dev. 10: 1996-77

Falck, J., et al. (2001). The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410: 842-847. 11298456

Fauman, E. B., et al. (1998). Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93(4): 617-625

Forbes, K. C., Humphrey, T. and Enoch, T. (1998). Suppressors of cdc25p overexpression identify two pathways that influence the G2/M checkpoint in fission yeast. Genetics 150(4): 1361-75

Furnari, B,, Rhind, N. and Russell, P. (1997). Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277(5331): 1495-1497

Gabrielli, B. G., et al. (1997a). Hyperphosphorylation of the N-terminal domain of Cdc25 regulates activity toward cyclin B1/cdc2 but not cyclin A/cdk2. J. Biol. Chem. 272(45): 28607-28614

Gabrielli, B. G., et al. (1997b). Ultraviolet light-induced G2 phase cell cycle checkpoint blocks cdc25-dependent progression into mitosis. Oncogene 15(7): 749-758

Galaktionov, K., Jessus, C. and Beach, D. (1995). Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev 9: 1046-1058

Galaktionov, K., Chen, X. and Beach, D. (1996). Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382: 511-517

Gould, A. P., et al. (1990). Blocking cell division does not remove the requirement for Polycomb function in Drosophila embryogenesis. Development 110: 1319-25

Greaves, S., et al. (1999). A screen for identifying genes interacting with Armadillo, the Drosophila homolog of ß-catenin. Genetics 153: 1753-1766.

Grendler, J., Lowgren, S., Mills, M. and Losick, V. P. (2019). Wound-induced polyploidization is driven by Myc and supports tissue repair in the presence of DNA damage. Development 146(15) pii: dev173005. PubMed ID: 31315896

Großhans, J. and Wieschaus, E. (2000). A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101: 523-31. PubMed ID: 10850494

Guo, Y., Flegel, K., Kumar, J., McKay, D.J. and Buttitta, L.A. (2016). Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol Open 5(11):1648-1661. PubMed ID: 27737823

Hassepass, I., Voit, R. and Hoffmann, I. (2003). Phosphorylation at serine-75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J Biol Chem. 278(32): 29824-9. 12759351

Hebeisen, M. and Ro, R. (2008). CDC-25.1 stability is regulated by distinct domains to restrict cell division during embryogenesis in C. elegans. Development 135: 1259-1269. PubMed Citation: 18287204

Iavarone, A. and Massague, J. (1997). Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 387 (6631): 417-422

Inaba, M., Yuan, H. and Yamashita, Y. M. (2011). String (Cdc25) regulates stem cell maintenance, proliferation and aging in Drosophila testis. Development 138(23): 5079-86. PubMed Citation: 22031544

Izumi, T., and Maller, J. L. (1995). Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity. Mol Biol Cell 6: 215-226

Jemc, J. and Rebay, I. (2007). Identification of transcriptional targets of the dual-function transcription factor/phosphatase eyes absent. Dev. Biol. 310(2): 416-29. PubMed Citation: 17714699

Johnston, L. A. and Edgar, B. A. (1998). Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 394(6688): 82-84

Kaneko, Y. S., et al. (1999). Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene 18(25): 3673-81

Karaiskou, A., Jessus, C., Brassac, T., and Ozon, R. (1999). Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J. Cell Sci. 112: 3747-3756

Karaiskou, A., et al. (2004). Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes. Development 131: 1543-1552. 14985258

Karlsson, C., et al. (1999). Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J. Cell Biol. 146: 573-584

Kerber, B., Fellert, S. and Hoch, M., (1998). Seven-up, the Drosophila homolog of the COUP-TF orphan receptors, controls cell proliferation in the insect kidney. Genes Dev. 12(12): 1781-1786

Kim, S. H., Li, C. and Maller, J. L. (1999). A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev. Biol. 212(2): 381-91

Kimura, K., Usui-Ishihara, A. and Usui, K. (1997). G2 arrest of cell cycle ensures a determination process of sensory mother cell formation in Drosophila. Dev. Genes Evol. 207: 199-202

Kostic, I. and Roy, R. (2002). Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. Development 129: 2155-2165. 11959825

Kovelman, R., and Russell, P. (1996). Stockpiling of Cdc25 during a DNA replication checkpoint arrest in Schizosaccharomyces pombe. Mol Cell Biol 16: 86-93

Krek, W., and Nigg, E. A. (1991). Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J. 10: 3331-41

Kumagai, A., and Dunphy, W. G. (1996). Purification and molecular cloning of Plx1, a Cdc25-regulated kinase from Xenopus egg extracts. Science 273: 1377-80

Kumagai, A., Yakowec, P. S. and Dunphy, W. G. (1998). 14-3-3 proteins act as negative regulators of the mitotic inducer cdc25 in Xenopus egg extracts. Mol. Biol. Cell 9(2): 345-354

Kumagai, A. and Dunphy, W. G. (1999). Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer cdc25. Genes Dev. 13(9): 1067-72

Kylsten, P and Saint, R. (1997). Imaginal tissues of Drosophila melanogaster exhibit different modes of cell proliferation control. Dev. Biol. 192: 509-522

Lehman, D. A,, et al. (1999). Cis-regulatory elements of the mitotic regulator, string/Cdc25. Development 126(9): 1793-1803. 10101114

Liu, N., et al. (1997). CDF-1, a novel E2F-unrelated factor, interacts with cell cycle-regulated repressor elements in multiple promoters. Nucleic Acids Res. 25(24): 4915-4920

Liu, Y., Sepich, D.S. and Solnica-Krezel, L. (2017). Stat3/Cdc25a-dependent cell proliferation promotes embryonic axis extension during zebrafish gastrulation. PLoS Genet 13: e1006564. PubMed ID: 28222105

Lopez-Girona, A., et al. (1999). Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397(6715): 172-5

Lu, B., Rothenberg, M., Jan, L. Y. and Jan, Y. N. (1998). Partner of numb colocalizes with numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95: 225-23

Lu, B., Ackerman, L., Jan, L. Y., Jan, Y. N. (1999). Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Molec. Cell 4: 883-891.

Mailand, N., et al. (2002). Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J. 21: 5911-5920. 12411508

Maile. T., Kwoczynski. S., Katzenberger, R. J., Wassarman, D. A., and Sauer, F. (2004). TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304(5673): 1010-4. Medline abstract: 15143281

Maleszka R., Hanes S. D., Hackett R. L., de Couet H. G. and Miklos G. L. (1996). The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 93: 447-451. 8552658

Margolis, S. S., et al. (2006). Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127(4): 759-73. Medline abstract: 17110335

Marygold, S. J. and Vincent, J.-P. (2003). Armadillo levels are reduced during mitosis in Drosophila. Mech. Dev. 120: 157-165. 12559488

Mata, J., Curado, S., Ephrussi, A. and Rørth, P. (2000). Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 101: 511-22.

Matsuoka, S., Huang, M. and Elledge, S. J. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282(5395): 1893-7

McCleland, M. L. and O'Farrell, P. H. (2008). RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle. Curr. Biol. 18: 245-254. PubMed Citation: 18291653

Meyer, C. A., et al. (2002). Drosophila p27Dacapo expression during embryogenesis is controlled by a complex regulatory region independent of cell cycle progression. Development 129: 319-328. 11807025

Milán, M., Campuzano, S. and García-Bellido, A. (1996). Cell cycling and patterned cell proliferation in the Drosophila wing during metamorphosis. Proc. Natl. Acad. Sci. 93: 11687-92

Mozer, B. A. and Easwarachandran, K. (1999). Pattern formation in the absence of cell proliferation: tissue specific regulation of cell cycle progression by string (stg) during Drosophila eye development. Dev. Biol. 213(1): 54-69

Murakami, M. S., Moody, S. A., Daar, I. O. and Morrison, D. K. (2004). Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 131: 571-580. 14711880

Myers, F. A., Francis-Lang, H. and Newbury, S. F. (1995). Degradation of maternal string mRNA is controlled by proteins encoded on maternally contributed transcripts. Mech Dev 51: 217-226

Nabel-Rosen, H., Toledano-Katchalski, H., Volohonsky, G. and Volk, T. (2005). Cell divisions in the Drosophila embryonic mesoderm are repressed via posttranscriptional regulation of string/cdc25 by HOW. Curr. Biol. 15: 295-302. Medline abstract: 15723789

Nakajo, N., et al. (1999). Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes. Dev. Biol. 207(2): 432-44

Nefsky, B., and Beach, D. (1996). Pub1 acts as an E6-AP-like protein ubiquitin ligase in the degradation of cdc25. EMBO J. 15: 1301-1312

Nègre, N., Ghysen, A. and Martinez, A. M. (2003). Mitotic G2-arrest is required for neural cell fate determination in Drosophila. Mech. Dev. 120: 253-265. 12559497

Ninov, N., Manjon, C. and Martin-Blanco, E. (2009). Dynamic control of cell cycle and growth coupling by ecdysone, EGFR, and PI3K signaling in Drosophila histoblasts. PLoS Biol 7: e1000079. PubMed ID: 19355788

Oe, T., et al. (2001). Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes. Dev. Biol. 229: 250-261. 11133168

O'Farrell, F. and Kylsten, P. (2008). A mis-expression study of factors affecting Drosophila PNS cell identity. Biochem. Biophys. Res. Commun. 370(4): 657-62. PubMed Citation: 18420029

Peng, C. Y.L., et al. (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277(5331): 1501-1505

Perrin, L., et al.(2003). Modulo is a target of Myc selectively required for growth of proliferative cells in Drosophila. Mech. Dev. 120: 645-655. 12834864

Price, D. M., Jin, Z., Rabinovitch, S. and Campbell, S. D. (2002). Ectopic expression of the Drosophila cdk1 inhibitory kinases, Wee1 and Myt1, interferes with the second mitotic wave and disrupts pattern formation during eye development. Genetics 161: 721-731. 12072468

Prober, D. A. and Edgar, B. A. (2000). Ras1 promotes cellular growth in the Drosophila wing. Cell 100: 435-446. 10693760

Qian, Y. W., et al. (1998). Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 18(7): 4262-4271

Qian, Y. W., et al. (2001). The Polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and Cyclin B-Cdc2 in Xenopus oocytes. Mol. Biol. Cell 12: 1791-1799. 11408585

Quinn, L. M., Dickins, R. A., Coombe, M., Hime, G. R., Bowtell, D. D. and Richardson, H. (2004). Drosophila Hfp negatively regulates dmyc and stg to inhibit cell proliferation. Development 131(6): 1411-23. 14993190

Rebay, I., et al. (2000). A genetic screen for novel components of the Ras/Mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein. Genetics 154: 695-712

Reber, A., Lehner, C. F. and Jacobs, H. W. (2006). Terminal mitoses require negative regulation of Fzr/Cdh1 by Cyclin A, preventing premature degradation of mitotic cyclins and String/Cdc25. Development 133(16): 3201-11. 16854973

Reed, B. H. (1995). Drosophila development pulls the strings of the cell cycle. Bioessays 17: 553-556

Reim, I., Lee, H.-H. and Frasch, M. (2003). The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development 130: 3187-3204. 12783790

Rimkus, S. A., et al. (2008). Mutations in String/CDC25 inhibit cell cycle re-entry and neurodegeneration in a Drosophila model of Ataxia telangiectasia. Genes Dev. 22: 1205-1220. PubMed Citation: 18408079

Saha, P., et al. (1997). p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol. Cell. Biol. 17: 4338-4345

Sanchez, Y. L., et al. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331): 1497-1501

Schaeffer, V., et al. (2004). Notch-dependent Fizzy-related/Hec1/Cdh1 expression is required for the mitotic-to-endocycle transition in Drosophila follicle cells. Curr. Biol. 14: 630-636. 15062106

Secombe, J., et al. (1998). Analysis of a Drosophila cyclin E hypomorphic mutation suggests a novel role for Cyclin E in cell proliferation control during eye imaginal disc development. Genetics 149(4): 1867-1882

Seher, T. C. and Leptin, M. (2000). Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr. Biol. 10(11): 623-9.

Shcherbata, H. R., et al. (2004). The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 131: 3169-3181. 15175253

Shen, M., et al. (1998). The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12(5): 706-20

Shimuta, K., et al. (2002). Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J. 21: 3694-3703. 12110582

Sigrist, S., Ried, G. and Lehner, C. F. (1995). Dmcdc2 kinase is required for both meiotic divisions during Drosophila spermatogenesis and is activated by the Twine/cdc25 phosphatase. Mech. Dev. 53: 247-260

Smith, A. V. and Orr-Weaver, T. L. (1991). The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development 112: 997-1008

Stukenberg, P. T. and Kirschner, M. W. (2001). Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell 7: 1071-1083. 11389853

Su, T. T., Campbell, S. D. and O'Farrell, P. H. (1998). The cell cycle program in germ cells of the Drosophila embryo. Dev. Biol. 196(2): 160-170

Su, T. T., Walker, J. and Stumpff. J. (2000). Activating the DNA damage checkpoint in a developmental context. Curr. Biol 10: 119-126

Sudarsan, V., et al. (2002). A genetic hierarchy establishes mitogenic signaling and mitotic competence in the renal tubules of Drosophila. Development 129: 935-944. 11861476

Sun, J. and Deng, W.-M. (2007). Hindsight mediates the role of Notch in suppressing Hedgehog signaling and cell proliferation. Dev. Cell 12: 431-442. Medline abstract: 17336908

Sveiczer, A., Novak, B. and Mitchison, J. M. (1999). Mitotic control in the absence of cdc25 mitotic inducer in fission yeast. J. Cell Sci. 112 (Pt 7): 1085-92

Swaminathan, A. and Pile, L. A. (2010). Regulation of cell proliferation and wing development by Drosophila SIN3 and String. Mech. Dev. 127: 96-106. PubMed Citation: 19825413

Tearle, R. G., Tomlinson, A. and Saint, R. (1994). The dominant Drop eye mutations of Drosophila melanogaster define two loci implicated in normal eye development. Molec. Gen. Genet. 244: 426-434

Thomas, B. J., Gunning, D. A., Cho, J. and Zipursky, S. L. (1994). Cell cycle progression in the developing Drosophila eye: roughex encodes a novel protein required for the establishment of G1. Cell 77: 1003-1014

Toczyski, D. P., Galgoczy, D. J. and Hartwell, L. H. (1997). CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90(6): 1097-1106.

van der Kooij, A., Veraart, C. P. and van Loon, A. E. (1998). Cyclin A, cyclin B and stringlike are regulated separately in cell cycle arrested trochoblasts of Patella vulgata embryos. Dev. Genes Evol. 207(8): 524-34

Vincent, A., Blankenship, J. T. and Wieschaus, E. (1997). Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila. Development 124(19): 3747-3754

Varghese, J. and Cohen, S. M. (2007). microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev 21: 2277-2282. PubMed ID: 17761811

Verma, P. and Cohen, S. M. (2015). miR-965 controls cell proliferation and migration during tissue morphogenesis in the abdomen. Elife 4. PubMed ID: 26226636

Wai, P., Truong, B. and Bhat, K. M. (1999). Cell division genes promote asymmetric interaction between Numb and Notch in the Drosophila CNS. Development 126(12): 2759-2770

Wang, R., et al. (2007). Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition. Cell 128: 1119-1132. Medline abstract: 17382881

Wassarman, D. A. and Sauer, F. (2001). TAF(II)250: a transcription toolbox. J. Cell Sci. 114(Pt 16): 2895-902. Medline abstract: 11686293

Winkler, K. E., et al. (2000). Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287(5458): 1644-7

Yan, B., Memar, N., Gallinger, J. and Conradt, B. (2013). Coordination of cell proliferation and cell fate determination by CES-1 snail. PLoS Genet 9: e1003884. PubMed ID: 24204299

Yang, J., et al. (1999). Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. EMBO J. 18(8): 2174-2183. PubMed ID: 10205171

Zeng, Y., et al. (1998). Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395(6701): 507-10

Zhou, X. Z., et al. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. Molecular Cell 6: 873-883

Zwicker, J., et al. (1995). Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J. 14(18): 4514-4522

Zwicker, J., et al. (1997). CDF-1-mediated repression of cell cycle genes targets a specific subset of transactivators. Nucleic Acids Res. 25(24): 4926-4932


string: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation

date revised: 3 January 2020
  

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.