Aliprantis, A. O., et al. (1999). Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285(5428): 736-9. PubMed Citation: 10426996

Ambrosi, P., Chahda, J. S., Koslen, H. R., Chiel, H. J. and Mizutani, C. M. (2014). Modeling of the Dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution. PLoS Comput Biol 10: e1003807. PubMed ID: 25165818

Anderson, K.V., Jürgens, G. and Nüsslein-Volhard, C. (1985). Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42: 779-789. PubMed Citation: 3931918

Armstrong, N. J., et al. (1998). Conserved Spatzle/Toll signaling in dorsoventral patterning of Xenopus embryos. Mech. Dev. 71(1-2): 99-105. PubMed Citation: 9507077

Biemar, F., et al. (2006). Comprehensive identification of Drosophila dorsal-ventral patterning genes using a whole-genome tiling array. Proc. Natl. Acad. Sci. 103(34): 12763-8. Medline abstract: 16908844

Boutros, M., Agaisse, H. and Perrimon, N. (2002). Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3: 711-722. 12431377

Bowman, A. B., et al. (2000). Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103: 583-594. 11106729

Burns, K., et al. (1998). MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273(20): 12203-9. PubMed Citation: 9575168

Byrd, D. T., et al. (2001). UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32: 787-800. 11738026

Carvalho, L., Jacinto, A. and Matova, N. (2014). The Toll/NF-kappaB signaling pathway is required for epidermal wound repair in Drosophila. Proc Natl Acad Sci U S A 111(50):E5373-82. PubMed ID: 25427801

Charatsi, I., et al. (2002). Krapfen/dMyd88 is required for the establishment of dorsoventral pattern in the Drosophila embryo. Mech. Dev. 120: 219-226. 12559494

Chaudhary, P. M., et al. (1998). Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91(11): 4020-7. PubMed Citation: 9596645

Chen, L. Y., et al. (2006). Weckle is a zinc finger adaptor of the toll pathway in dorsoventral patterning of the Drosophila embryo. Curr. Biol. 16(12): 1183-93. Medline abstract: 16782008

Choe, K. M., Werner, T., Stoven, S., Hultmark, D. and Anderson, K. V. (2002). Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296: 359-362. 11872802

Chow, J. C., et al. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274(16): 10689-10692. PubMed Citation: 10196138

Coll, O., et al. (2010). A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis. Genes Dev. 24(2): 129-34. PubMed Citation: 20080951

Creton, R., Kreiling, J. A. and Jaffe, L. F. (2000). Presence and roles of calcium gradients along the dorsal-ventral axis in Drosophila embryos. Dev. Biol. 217: 375-385. PubMed Citation: 10625561

Davidson, C., Tirouvanziam, R., Herzenberg, L. and Lipsick, J. (2004). Functional Evolution of the Vertebrate Myb Gene Family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in Hemocytes. Genetics 169(1): 215-29. 15489525

De Gregorio, E., et al. (2002). The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21: 2568-2579. 12032070

Dziarski, R. (2004). Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 40: 877-886. 14698226

Edwards, D. N., Towb, P. and Wasserman, S. A. (1997). An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124(19): 3855-3864. PubMed Citation: 9367441

El Chamy, L., Leclerc, V., Caldelari, I. and Reichhart, J. M. (2008). Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll. Nat. Immunol. 9: 1165-1170. PubMed Citation: 18724373

Eldon, E., et al. (1994). The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 120: 885-899. PubMed Citation: 7600965

Engel, E., Viargues, P., Mortier, M., Taillebourg, E., Coute, Y., Thevenon, D. and Fauvarque, M. O. (2014). Identifying USPs regulating immune signals in Drosophila: USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome. Cell Commun Signal 12: 41. PubMed ID: 25027767

Ferreira, A. G., Naylor, H., Esteves, S. S., Pais, I. S., Martins, N. E. and Teixeira, L. (2014). The Toll-Dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog 10: e1004507. PubMed ID: 25473839

Galindo, R. L., et al. (1995). Interaction of the pelle kinase with the membrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development 121: 2209-2218. PubMed Citation: 7635064

Garver, L. S., Wu, J. and Wu, L. P. (2006). The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. 103(3): 660-5. 16407137

Gay, N. J., et al. (1991). A leucine-rich repeat peptide derived from the Drosophila Toll receptor forms extended filaments with a beta-sheet structure. FEBS Lett. 291 (1): 87-91. PubMed Citation: 1657640

Gillespie, S. K. and Wasserman, S. A. (1994). Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol Cell Biol 14: 3559-68. PubMed Citation: 8196601

Gonzalez-Crespo, S. and Levine, M. (1994). Related target enhancers for dorsal and NF-kappa B signaling pathways. Science 264: 255-8. PubMed Citation: 8146656

Gottar, M., et al. (2006). Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127: 1425-1437. PubMed Citation: 17190605

Guida, S., Heguy, A. and Melli, M. (1992). The chicken IL-1 receptor: differential evolution of the cytoplasmic and extracellular domains. Gene 111: 239-43

Halfon, M. S., Hashimoto, C. and Keshishian, H. (1995). The Drosophila Toll gene functions zygotically and is necessary for proper motoneuron and muscle development. Dev Biol 169: 151-167

Halfon, M. S. and Keshishian, H. (1998). The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo. Dev. Biol. 199(1): 164-174

Hashimoto, C., Hudson, K. L. and Anderson, K. V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52: 269-79

Hashimoto, C., Gerttula, S. and Anderson, K. V. (1991). Plasma membrane localization of the Toll protein in the syncytial Drosophila embryo: importance of transmembrane signaling for dorsal-ventral pattern formation. Development 111: 1021-8

Heguy, A., et al. (1992). Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila Toll protein are essential for IL-1R signal transduction. J Biol Chem 267: 2605-9

Horng, T. and Medzhitov, R. (2001). Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl. Acad. Sci. 98: 12654-12658. 11606776

Horng, T., et al. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420: 329-333. 12447442

Hu, S. and Yang, X. (2000). dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275: 30761-30764. 10934188

Hu, X., Yagi, Y., Tanji, T., Zhou, S. and Ip, Y. T. (2004). Multimerization and interaction of Toll and Spatzle in Drosophila. Proc. Natl. Acad. Sci. 101(25): 9369-74. 15197269

Huang, A. M., Rusch, J., and Levine, M. (1997). An anteroposterior Dorsal gradient in the Drosophila embryo. Genes Dev. 11(15): 1963-1973

Huang, H. R., et al. (2010). Endocytic pathway is required for Drosophila Toll innate immune signaling. Proc. Natl. Acad. Sci. 107(18): 8322-7. PubMed Citation: 20404143

Hultmark, D. (1994). Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem. Biophys. Res. Commun. 199: 144-6

Inaki, M., Yoshikawa, S., Thomas, J. B., Aburatani, H. and Nose, A. (2007). Wnt4 is a local repulsive cue that determines synaptic target specificity. Curr. Biol. 17: 1574-1579. PubMed Citation: 17764943

Inaki, M., Shinza-Kameda, M., Ismat, A., Frasch, M. and Nose, A. (2010). Drosophila Tey represses transcription of the repulsive cue Toll and generates neuromuscular target specificity. Development 137(13): 2139-46. PubMed Citation: 20504957

Ji, S., Sun, M., Zheng, X., Li, L., Sun, L., Chen, D. and Sun, Q. (2014). Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila. Nat Commun 5: 3458. PubMed ID: 24632597

Kagan, J. C., et al. (2008). TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9: 361-368. PubMed Citation: 18297073

Kambris, Z., et al. (2006). Drosophila immunity: A large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16: 808-813. 16631589

Keith, F. J. and Gay, N. J. (1990). The Drosophila membrane receptor Toll can function to promote cellular adhesion. EMBO J. 9: 4299-306

Kirschning, C. J., et al. (1998). Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188(11): 2091-7

Kubota, K., Keith, F. J. and Gay, N. J. (1993). Relocalization of Drosophila Dorsal protein can be induced by a rise in cytoplasmic calcium concentration and the expression of constitutively active but not wild-type Toll receptors. Biochem J 296 ( Pt 2): 497503

Kubota, K., Keith, F. J. and Gay, N. J. (1995). Wild type and constitutively activated forms of the Drosophila Toll receptor have different patterns of N-linked glycosylation. FEBS Lett 365: 83-86

Lagueux, M., et al. (2000). Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proc. Natl. Acad. Sci. 97: 11427-11432

Larrain, J., et al. (2000). BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127: 821-830

Lemaitre, B., et al. (1995). Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J 14: 536-545

Lemaitre, B., et al. (1996). The Dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983

Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D. and Lemaitre, B. (2003). The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4: 478-484. 12692550

Levashina, E. A., et al. (1999). Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285: 1917-9. PubMed ID: 10489372

Lewis, M., Arnot, C. J., Beeston, H., McCoy, A., Ashcroft, A. E., Gay, N. J. and Gangloff, M. (2013). Cytokine Spatzle binds to the Drosophila immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation. Proc Natl Acad Sci U S A 110: 20461-20466. PubMed ID: 24282309

Lieberfarb, M. E., et al. (1996). Mutations that perturb poly(A)-dependent maternal mRNA activation block the initiation of development. Development 122: 579-588

Ligoxygakis, P., et al. (2002). Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297: 114-116. 12098703

Luschnig, S., et al. (2004). An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster. Genetics 167: 325-342. Medline abstract: 15166158

Matsuguchi, T., et al. (2003). JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO J. 22: 4455-4464. 12941697

Mavrakis, M., Rikhy, R. and Lippincott-Schwartz, J. (2008). Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev. Cell 16: 93-104. PubMed Citation: 19154721

Maxton-Kuchenmeister, J., et al. (1999). Toll homologue expression in the beetle tribolium suggests a different mode of dorsoventral patterning than in drosophila embryos. Mech. Dev. 83(1-2): 107-14

Medzhitov, R., Preston-Hurlburt, P. and Janeway, C. A. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640): 394-397

Medzhitov, R., et al. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2(2): 253-8

Mellroth, P., Karlsson, J. & Steiner, H. (2003). A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278: 7059-7064. 12496260

Meng, X., Khanuja, B. S. and Ip, Y. T. (1999). Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev. 13(7): 792-797

Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001). Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 414(6865): 756-9. 11742401

Ming, M., Obata, F., Kuranaga, E. and Miura, M. (2014). Persephone/Spatzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J Biol Chem [Epub ahead of print]. PubMed ID: 24492611

Mitcham, J. L., et al. (1996). T1/ST2 signaling establishes it as a member of an expanding interleukin-1 receptor family. J. Biol. Chem. 271: 5777-5783

Miura, G. I., et al. (2008). Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development 135: 1913-1922. PubMed Citation: 18434417

Morisato, D. and Anderson, K. V. (1994). The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76: 677-88

Muzio M., et al. (1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278(5343): 1612-1615

Muzio M., et al. (1998). The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187(12): 2097-101

Nambu, J. R., et al. (1990). The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63: 63-75

Ninomiya-Tsuji, J., et al. (1998). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724): 252-6

Norris, J. L. and Manley, J. L. (1995). Regulation of dorsal in cultured cells by Toll and tube: tube function involves a novel mechanism. Genes Dev. 9: 358-369

Norris, J. L. and Manley, J. L. (1996). Functional interactions between the pelle kinase, Toll receptor, and Tube suggest a mechanism for activation of Dorsal. Genes Dev. 10(7): 862-72

Nose, A., Mahajan, V. B. and Goodman, D. S. (1992). Connectin: a homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervate them in Drosophila. Cell 70: 553-67

Ollendorff, V., et al. (1994). The GARP gene encodes a new member of the family of leucine-rich repeat-containing proteins. Cell Growth Differ 5: 213-9

Ozuak, O., Buchta, T., Roth, S. and Lynch, J. A. (2014). Dorsoventral polarity of the Nasonia embryo primarily relies on a BMP gradient formed without input from Toll. Curr Biol [Epub ahead of print]. PubMed ID: 25308075

Park, J. S., et al. (2004). Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279(9): 7370-7. 14660645

Peng, J., Zipperlen, P. and Kubli, E. (2005). Drosophila Sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr. Biol. 15: 1690-1694. 16169493

Prothmann, C., Armstrong, N. J. and Rupp, R. A. W. (2000). The Toll/IL-1 receptor binding protein MyD88 is required for Xenopus axis formation. Mech. Dev. 97: 85-92. PubMed Citation: 11025209

Pujol, N., et al. (2001). A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11: 809-821. PubMed Citation: 11516642

Qiu, P. Pan, P. C. and Govind, S. (1998). A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125(10): 1909-1920. PubMed Citation: 9550723

Rock, F. L., et al. (1998). A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. 95: 588-593. PubMed Citation: 9435236

Roh, K. B., et al. (2009). Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem. 284(29): 19474-81. PubMed Citation: 19473968

Rose, D., et al. (1997). Toll, a muscle cell surface molecule, locally inhibits synaptic initiation of the RP3 motoneuron growth cone in Drosophila Development 124 (8): 1561-1571

Rose, D. and Chiba, A. (1999). A single growth cone is capable of integrating simultaneously presented and functionally distinct molecular cues during target recognition. J. Neurosci. 19(12): 4899-4906. PubMed ID: 10366624

Rosetto, M., et al. (1995). Signals from the IL-1 receptor homolog, Toll, can activate an immune response in a Drosophila hemocyte cell line. Biochem. Biophys. Res. Commun. 209: 111-116

Roth, S. (1994). Axis determination. Proteolytic generation of a morphogen. Curr Biol 4: 755-7

Rusch, J. and Levine, M. (1994). Regulation of the Dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev 8: 1247-1257

Salles, F. J., et al (1994). Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science 266: 1996-1999

Sanz, L., Diaz-Meco, M. T, Nakano, H. and Moscat, J. (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J. 19(7): 1576-86. 10747026

Schisa, J. A. and Strickland, S. (1998). Cytoplasmic polyadenylation of Toll mRNA is required for dorsal-ventral patterning in Drosophila embryogenesis. Development 125(15): 2995-3003. PubMed ID: 9655821

Schmid, M. R., Anderl, I., Vesala, L., Vanha-Aho, L. M., Deng, X. J., Ramet, M. and Hultmark, D. (2014). Control of Drosophila blood cell activation via Toll signaling in the fat body. PLoS One 9: e102568. PubMed ID: 25102059

Schneider, D. S., et al. (1991). Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev 5: 797-807

Schneider, D. S., et al. (1994). A processed form of the Spätzle protein defines dorsal-ventral polarity in the Drosophila embryo. Development 120: 1243-50

Schmidt, E. D. L., et al. (1997). A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124: 2049-2062

Shen, B. and Manley, J. L. (1998). Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125: 4719-4728

Shen, B. and Manley, J. L. (2002). Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila. Development 129: 1925-1933. 11934858

Sorrentino, R. P., Melk, J. P. and Govind, S. (2004). Genetic analysis of contributions of dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration and the egg encapsulation response in Drosophila. Genetics 166: 1343-1356. 15082553

Steiner, H. (2004). Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol. Rev. 198: 83-96. 15199956

Stein, D. and Nusslein-Volhard, C. (1992). Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity. Cell 68: 429-40

Tauszig, S., et al. (2000). Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. Vol. 97: 10520-10525

Tipping, M., et al. (2010). beta-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development. EMBO J. 29: 3222-3235. PubMed Citation: 20802461

Towb, P., Galindo, R. L. and Wasserman, S. A. (1998). Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125: 2443-2450

Wang, J., Tao, Y., Reim, I., Gajewski, K., Frasch, M. and Schulz, R. A. (2005). Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila melanogaster. Mol. Cell Biol. 25(10): 4200-10. 15870289

Werner, T., Borge-Renberg, K., Mellroth, P., Steiner, H. and Hultmark, D. (2003). Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Biol. Chem. 278: 26319-26322. 12777387

Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. and Cao, Z. (1997). MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837-847. 9430229

Wharton, K. A. and Crews, S. T. (1993). CNS midline enhancers of the Drosophila slit and Toll genes. Mech. Dev. 40: 141-154. 8494768

Whitham, S., et al. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115

Winans, K. A. and Hashimoto, C. (1995). Ventralization of the Drosophila embryo by deletion of extracellular leucine-rich repeats in the Toll protein. Mol Biol Cell 6: 587-596

Yang, R. B., et al. (1998). Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395(6699): 284-8

Yamagata, M., Merlie, J. P. and Sanes, J. R. (1994). Interspecific comparisons reveal conserved features of the Drosophila Toll protein. Gene 139: 223-8

Yamamoto, M., et al. (2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420: 324-329. 12447441

Toll: Biological Overview | Evolutionary Homologs | Regulation | Protein Interactions | Developmental Biology | Effects of Mutation

date revised: 15 November 2014

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.