sparkling


REFERENCES

Avet-Rochex, A., Carvajal, N., Christoforou, C. P., Yeung, K., Maierbrugger, K. T., Hobbs, C., Lalli, G., Cagin, U., Plachot, C., McNeill, H., Bateman, J. M. (2014). Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control. PLoS Genet 10: e1004624. PubMed ID: 25210733

Balczarek, K. A., Lai, Z. C. and Kumar, S. (1997). Evolution of functional diversification of the paired box (Pax) DNA-binding domains. Mol. Biol. Evol. 14(8): 829-842. PubMed Citation: 9254921

Bäumer, N., et al. (2003). Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development 130: 2903-2915. 12756174

Bouchard, M., Pfeffer, P. and Busslinger, M. (2000). Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 127: 3703-3713. PubMed Citation: 10934015

Bouchard, M., et al. (2002). Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16: 2958-2970. 12435636

Bouchard, M., et al. (2005). Identification of Pax2-regulated genes by expression profiling of the mid-hindbrain organizer region. Development 132: 2633-2643. 15872005

Breitling, R. and Gerber, J.-K. (2000). Origin of the paired domain. Dev. Genes Evol. 210: 644-650. 21025774

Brophy, P. D., et al. (2001). Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128: 4747-4756. 11731455

Brunner E., et al. (1999). The dominant mutation glazed is a gain-of-function allele of wingless that, similar to loss of APC, interferes with normal eye development. Dev. Biol. 206(2): 178-88. 99143072

Burrill, J.D., et al. (1997). PAX2 is expressed in multiple spinal cord interneurons, including a population of EN1+ interneurons that require PAX6 for their development. Development 124(22): 4493-4503. PubMed Citation: 9409667

Busslinger, M., et al. (1996). Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc. Natl. Acad. Sci. 93(12): 6129-6134. PubMed Citation: 8650231

Canon, J. and Banerjee, U. (2003). In vivo analysis of a developmental circuit for direct transcriptional activation and repression in the same cell by a Runx protein. Genes Dev. 17: 838-843. 12670867

Carroll, T. J. and Vize, P. D. (1999). Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev. Biol. 214(1): 46-59

Chamberlin, H. M., et al. (1997). The PAX gene egl-38 mediates developmental patterning in Caenorhabditis elegans. Development 124(20): 3919-3928

Czerny, T. and Busslinger, M. (1995). DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol. Cell. Biol. 15(5): 2858-2871

Czerny, T., Bouchard, M., Kozmik, Z. and Busslinger, M. (1997). The characterization of novel Pax genes of the sea urchin and Drosophila reveal an ancient evolutionary origin of the Pax2/5/8 subfamily. Mech. Dev. 67(2): 179-192

Dehbi, M., et al. (1996a). The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1). Oncogene 13(3): 447-453

Dehbi, M. and Pelletier, J. (1996b). PAX8-mediated activation of the wt1 tumor suppressor gene. EMBO J. 15(16): 4297-4306

Dorfler, P. and Busslinger, M. (1996). C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J. 15(8): 1971-1982

Dressler, G. R., et al. (1990). Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109(4): 787-795

Eberhard, D. and Busslinger, M. (1999). The partial homeodomain of the transcription factor Pax-5 (BSAP) is an interaction motif for the retinoblastoma and TATA-binding proteins. Cancer Res. 59: S1716-S1725. 10197586

Eberhard, D., et al. (2000). Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19: 2292-2303

Eccles, M R., et al. (1992). Expression of the PAX2 gene in human fetal kidney and Wilms' tumor. Cell Growth Differ. 3(5): 279-289

Favor, J., et al. (1996). The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. 93(24): 13870-13875

Fitzsimmons, D., et al. (1996). Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 10(17): 2198-2211

Flores, G. V., et al. (2000). Combinatorial signaling in the specification of unique cell fates. Cell 103: 75-85.

Fraizer, G. C., et al. (1997). PAX 8 regulates human WT1 transcription through a novel DNA binding site. J. Biol. Chem. 272(49): 30678-30687

Freeman, M. (1996). Reiterative use of the EGF Receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660

Fu, W. and Noll, M. (1997). The Pax2 homolog sparkling is required for development of cone and pigment cells in the Drosophila eye. Genes Dev. 11(16): 2066-2078. PubMed Citation: 9284046

Fu, W., et al. (1998). shaven and sparkling are mutations in separate enhancers of the Drosophila Pax2 homolog. Development 125: 2943-2950

Galliot, I. and Miller, I, (2000) Origin of anterior patterning. How old is our head? Trends Genet. 16: 1-5.

Groger, H., et al. (2000). Characterization and expression analysis of an ancestor-type Pax gene in the hydrozoan jellyfish Podocoryne carnea. Mech. Dev. 94: 157-169.

Hans, S., Liu, D. and Westerfield, M. (2004). Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors. Development 131: 5091-5102. 15459102

Heller, N. and Brändli, A. W. (1997). Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. Mech. Dev. 69(1-2): 83-104

Herbrand, H., et al. (1998). Two regulatory genes, cNkx5-1 and cPax2, show different responses to local signals during otic placode and vesicle formation in the chick embryo. Development 125(4): 645-654

Hewitt, S. M., et al. (1997). Transcriptional activation of the bcl-2 apoptosis suppressor gene by the paired box transcription factor PAX8. Anticancer Res. 17(5A): 3211-3216

Hidalgo-Sanchez, M., et al. (1999). Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mech. Dev. 81(1-2): 175-8

Iida, S., et al. (1996). The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 88(11): 4110-4117

Imai, K. S., Stolfi, A., Levine, M. and Satou, Y. (2009). Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136(2): 285-93. PubMed Citation: 19088089

Johnson, A. D., et al. (2001). EGL-38 Pax regulates the ovo-related gene lin-48 during Caenorhabditis elegans organ development. Development 128: 2857-2865. 11532910

Johnson, S. A., Harmon, K. J., Smiley, S. G., Still, F. M. and Kavaler, J. (2010). Discrete regulatory regions control early and late expression of D-Pax2 during external sensory organ development. Dev. Dyn. 240(7): 1769-78. PubMed Citation: 21644243

Kambe, F., et al. (1996). Redox regulation of thyroid-transcription factors, Pax-8 and TTF-1, is involved in their increased DNA-binding activities by thyrotropin in rat thyroid FRTL-5 cells. Mol. Endocrinol. 10(7): 801-812. PubMed Citation: 8813721

Kavaler, J., et al. (1999). An essential role for the Drosophila Pax2 homolog in the differentiation of adult sensory organs. Development 126: 2261-2272. PubMed Citation: 10207150

Kelly, G. M. and Moon, R. T. (1995). Involvement of wnt1 and pax2 in the formation of the midbrain-hindbrain boundary in the zebrafish gastrula. Dev. Genet. 17(2): 129-140. PubMed Citation: 7586754

Kozmik, Z., et al. (1995). Deregulated expression of PAX5 in medulloblastoma. Proc. Natl. Acad. Sci. 92(12): 5709-5713. PubMed Citation: 7777574

Kozmik, Z., Czerny, T. and Busslinger, M. (1997). Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 16(22): 6793-6803. PubMed Citation: 9362493

Kozmik, Z., et al. (1999). Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 126(6): 1295-1304. PubMed Citation: 10021347

Kozmik, Z., et al. (2003). Role of Pax genes in eye evolution: A Cnidarian paxb gene uniting Pax2 and Pax6 functions. Dev. Cell 5: 773-785. 14602077

Kuschert, S., et al. (2001). Characterization of Pax-2 regulatory sequences that direct transgene expression in the Wolffian duct and its derivatives. Dev. Biol. 229: 128-140. 11133159

Liu, A. and Joyner, A. L. (2001). EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128: 181-191

Liu, S., et al. (1997). Transforming growth factor-beta 1 regulates the expression of Pax-2, a developmental control gene, in renal tubule cells. Exp. Nephrol. 5(4): 295-300

Lun, K. and Brand, M. (1998). A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125(16): 3049-3062

Macdonald, R., et al. (1995). Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121(10): 3267-3278

Mackereth, M. D., Kwak, S. J., Fritz, A. and Riley, B. B. (2005). Zebrafish pax8 is required for otic placode induction and plays a redundant role with Pax2 genes in the maintenance of the otic placode. Development 132(2): 371-82. 15604103

Majumdar, A., et al. (2000). Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127: 2089-2098

Matsunaga, E., Araki, I. and Nakamura, H. (2000). Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development 127: 2357-2365.

McConnell, M. J., et al. (1997). Differential regulation of the human Wilms tumour suppressor gene (WT1) promoter by two isoforms of PAX2. Oncogene 14(22): 2689-2700

Miller, D. J., et al. (2000). Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): Implications for the evolution of the Pax gene family. Proc. Natl. Acad. Sci. 97: 4475-4480.

Moore, A. W., Roegiers, F., Jan, L. Y. and Jan, Y.-N. (2004). Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification. Genes Dev. 18: 623-628. 15075290

Neurath, M. F., Max, E. E. and Strober, W. (1995). Pax5 (BSAP) regulates the murine immunoglobulin 3' alpha enhancer by suppressing binding of NF-alpha P, a protein that controls heavy chain transcription. Proc. Natl. Acad. Sci. 92(12): 5336-5340

Nornes, H. O., et al. (1990). Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109(4): 797-809

Nutt, S. L., et al. (1997). Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 11(4): 476-491

Ohno, M., et al. (1999). The paired-domain transcription factor pax8 binds to the upstream enhancer of the rat Sodium/Iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription. Mol. Cell. Biol. 19(3): 2051-60

Okladnova, O., et al. (1997). The genomic organization of the murine Pax 8 gene and characterization of its basal promoter. Genomics 42(3): 452-461

Ostrom, L., et al. (2000). Reduced Pax2 gene dosage increases apoptosis and slows the progression of renal cystic disease. Dev. Biol. 219: 250-258.

Otteson, D. C., et al. (1998). Pax2 expression and retinal morphogenesis in the normal and Krd mouse. Dev. Biol. 193(2): 209-224

Patel, S. R., Kim, D., Levitan, I. and Dressler, G. R. (2007). The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev. Cell 13(4): 580-92. PubMed citation: 17925232

Pfeffer, P. L., et al. (1998). Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125(16): 3063-3074

Pfeffer, P. L., Bouchard, M. and Busslinger, M. (2000). Pax2 and homeodomain proteins cooperatively regulate a 435 bp enhancer of the mouse Pax5 gene at the midbrain-hindbrain boundary. Development 127: 1017-1028. 10662641

Pfeffer, P. L., et al. (2002). The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers Development 129: 307-318. 11807024

Phelps, D. E. and Dressler, G. R. (1996). Identification of novel Pax-2 binding sites by chromatin precipitation. J. Biol. Chem. 271(14): 7978-7985

Picke, A., et al. (2002). A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines. Development 129: 3227-3239. 12070097

Pickup, A. T., Ming, L. and Lipshitz, H. D. (2009). Hindsight modulates Delta expression during Drosophila cone cell induction. Development 136(6): 975-82. PubMed Citation: 19234063

Plachov, D., et al. (1990). Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110(2): 643-651

Poleev, A., et al. (1992). PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms' tumors. Development 116(3): 611-623

Poleev, A., et al. (1995). Distinct functional properties of three human paired-box-protein, PAX8, isoforms generated by alternative splicing in thyroid, kidney and Wilms' tumors. Eur. J. Biochem. 228(3): 899-911

Poleev, A., et al. (1997). Determination of functional domains of the human transcription factor PAX8 responsible for its nuclear localization and transactivating potential. Eur. J. Biochem. 247(3): 860-869

Reifers, F., et al. (1998). Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125(13): 2381-2395

Riccomagno, M. M., et al. (2002). Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev. 16: 2365-2378. 12231626

Rinkenberger, J. L., et al. (1996). An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5(4): 377-386

Rinkwitz-Brandt, S., Arnold, H. H. and Bober, E. (1996). Regionalized expression of Nkx5-1, Nkx5-2, Pax2 and sek genes during mouse inner ear development. Hear. Res. 99(1-2): 129-138

Sanek, N. A., Taylor, A. A., Nyholm, M. K. and Grinblat, Y. (2009). Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression. Development 136(22): 3791-800. PubMed Citation: 19855021

Sanson, B., et al. (1999). Engrailed and Hedgehog make the range of Wingless asymmetric in Drosophila embryos. Cell 98: 207-216

Sanyanusin, P., et al. (1996). Genomic structure of the human PAX2 gene. Genomics 35(1): 258-261

Sasakura, Y. and Makabe, K. W. (2001). A gene encoding a new ONECUT class homeodomain protein in the ascidian Halocynthia roretzi functions in the differentiation and specification of neural cells in ascidian embryogenesis Mech. Dev. 104: 37-48. 11404078

Schimmenti, L. A., et al. (1997). Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am. J. Hum. Genet. 60(4): 869-878

Schwarz, M., et al. (1997). Conserved biological function between pax-2 and pax-5 in midbrain and cerebellum development: evidence from targeted mutations. Proc. Natl. Acad. Sci. 94(26): 14518-14523

Schwarz, M., et al. (1999). Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech. Dev. 82(1-2): 29-39

Schwarz, M., et al. (2000). Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127: 4325-4334.

Shamloula, H. K., et al. (2002). rugose (rg), a Drosophila A kinase anchor protein, is required for retinal pattern formation and interacts genetically with multiple signaling pathways. Genetics 161(2): 693-710. 12072466

Shi, Y. and Noll, M. (2009). Determination of cell fates in the R7 equivalence group of the Drosophila eye by the concerted regulation of D-Pax2 and TTK88. Dev. Biol. 331: 68-77. PubMed Citation: 19406115

Stuart, E. T., et al. (1995). Loss of p53 function through PAX-mediated transcriptional repression. EMBO J. 14(22): 5638-5645. PubMed Citation: 8521821

Sun, H., et al. (1997). Evolution of paired domains: isolation and sequencing of jellyfish and hydra Pax genes related to Pax-5 and Pax-6. Proc. Natl. Acad. Sci. 94 (10): 5156-5161. PubMed Citation: 9144207

Swanson, C. I., Evans, N. C. and Barolo, S. (2010). Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev. Cell 18: 359-370. PubMed Citation: 20230745

Swanson, C. I., Schwimmer, D. B. and Barolo, S. (2011). Rapid evolutionary rewiring of a structurally constrained eye enhancer. Curr. Biol. 21(14): 1186-96. PubMed Citation: 21737276

Tallafuss, A., et al. (2001). The zebrafish buttonhead-like factor Bts1 is an early regulator of pax2.1 expression during mid-hindbrain development. Development 128: 4021-4034. 11641225

Tallafuß, A. and Bally-Cuif, L. (2003). Tracing of her5 progeny in zebrafish transgenics reveals the dynamics of midbrain-hindbrain neurogenesis and maintenance. Development 130: 4307-4323. 12900448

Tian J., et al. (1997). Pax-5 is identical to EBB-1/KLP and binds to the VpreB and lambda5 promoters as well as the KI and KII sites upstream of the Jkappa genes. Eur. J. Immunol. 27(3):750-755

Torres, M., Gomez-Pardo, E. and Gruss, P. (1996). Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122(11): 3381-3391

Torres, M. and Giraldez, F. (1998). The development of the vertebrate inner ear. Mech. Dev. 71(1-2): 5-21

Urbanek, P., et al. (1994). Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79(5): 901-912

Urbanek, P., et al. (1997). Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. Proc. Natl. Acad. Sci. 94(11): 5703-5708

Wada, H., et al. (1998). Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125(6): 1113-1122

Wagner, K. D., et al. (2006). An inducible mouse model for PAX2-dependent glomerular disease: insights into a complex pathogenesis. Curr. Biol. 16(8): 793-800. 16631587

Wendl, T., et al. (2002). pax2.1 is required for the development of thyroid follicles in zebrafish. Development 129: 3751-3760. 12117823

Weston, C. R., et al. (2003). JNK initiates a cytokine cascade that causes Pax2 expression and closure of the optic fissure. Genes Dev. 17: 1271-1280. 12756228

Winyard, P. J., et al. (1996). The PAX2 tanscription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J. Clin. Invest. 98(2): 451-459

Zwollo, P., et al. (1997). The Pax-5 gene is alternatively spliced during B-cell development. J. Biol. Chem. 272(15): 10160-10168


sparkling: Biological Overview | Evolutionary Homologs | Regulation | Protein Interactions | Developmental Biology | Effects of Mutation

date revised: 20 March 2012
 

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.