glial cells missing


Aigouy, B., et al. (2004). Time-lapse and cell ablation reveal the role of cell interactions in fly glia migration and proliferation. Development 131: 5127-5138. PubMed Citation: 15459105

Akiyama, Y., et al. (1996). The gcm-motif: A novel DNA-binding motif conserved in Drosophila and mammals. Proc. Natl. Acad. Sci. 93: 14912-14916. PubMed Citation: 8962155

Akiyama-Oda, Y., Hosoya, T. and Hotta, Y. (1998). Alteration of cell fate by ectopic expression of Drosophila glial cells missing in non-neural cells. Dev. Genes Evol. 208(10): 578-85. PubMed Citation: 9811976

Akiyama-Oda, Y., Hosoya, T. and Hotta, Y. (1999). Asymmetric cell division of thoracic neuroblast 6-4 to bifurcate glial and neuronal lineage in Drosophila. Development 126(9): 1967-1974. PubMed Citation: 10101130

Akiyama-Oda, Y., et al. (2000). Distinct mechanisms triggering glial differentiation in Drosophila thoracic and abdominal neuroblasts 6-4. Dev. Biol. 222: 429-439. PubMed Citation: 10837130

Alfonso, T. B. and Jones, B. W. (2002). gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Dev. Bio. 248: 369-383. 12167411

Altenhein, B., Becker, A., Busold, C., Beckmann, B., Hoheisel, J. D. and Technau, G. M. (2006). Expression profiling of glial genes during Drosophila embryogenesis. Dev. Biol. 296(2): 545-60. 16762338

Basyuk E, et al. (1999). Murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev. Dyn. 214(4): 303-11. PubMed Citation: 10213386

Bataille, L., Auge, B., Ferjoux, G., Haenlin, M. and Waltzer, L. (2005). Resolving embryonic blood cell fate choice in Drosophila: interplay of GCM and RUNX factors. Development 132(20): 4635-44. 16176949

Bayraktar, O. A., et al. (2010). Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev. 5: 26. PubMed Citation: 20920301

Berger, C., Pallavi, S. K., Prasad, M., Shashidhara, L. S. and Technau, G. M. (2005). A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster. Nat. Cell Biol. 7(1): 56-62. Medline abstract: 15580266

Bernardoni. R, Vivancos, R. B. V. and Giangrande, A. (1997). glide/gcm is expressed and required in the scavenger cell lineage. Dev. Biol. 191(1): 118-130. PubMed Citation: 9356176

Bernardoni, R., Miller, A. A. and Giangrande, A. (1998). Glial differentiation does not require a neural ground state. Development 125(16): 3189-3200. PubMed Citation: 9671591

Bernardoni, R., et al. (1999). Gliogenesis depends on glide/gcm through asymmetric division of neuroglioblasts. Dev. Biol. 216(1): 265-75. PubMed Citation: 10588877

Booth, G. E., Kinrade, E. F. V. and Hidalgo, A. (2000). Glia maintain follower neuron survival during Drosophila CNS development. Development 127: 237-244. PubMed Citation: 10603342

Choksi, S. P., et al. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev. Cell 11(6): 775-89. Medline abstract: 17141154

Chotard, C., Leung, W. and Salecker, I. (2005). glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 48(2): 237-51. 16242405

Cohen, S. X., et al. (2003). Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO J. 22: 1835-1845. 12682016

Colonques, J., Ceron, J. and Tejedor, F. J. (2007). Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain. Mech. Dev. 124: 327-340. Medline abstract: 17344035

De Graeve, F., et al. (2004). The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells. Dev. Biol. 270: 122-134. PubMed Citation: 15136145

De Iaco, R., Soustelle, L., Kammerer, M., Sorrentino, S., Jacques, C. and Giangrande, A. (2006), Huckebein-mediated autoregulation of Glide/Gcm triggers glia specification. EMBO J. 25(1): 244-54. 16362045

Egger, B., et al. (2002). Gliogenesis in Drosophila: genome-wide analysis of downstream genes of glial cells missing in the embryonic nervous system. Development 129: 3295-3309. 12091301

Flici, H., et al. (2011). Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia. Development 138(19): 4167-78. PubMed Citation: 21852399

Flici, H. and Giangrande, A. (2012). Stem cell aging and plasticity in the Drosophila nervous system. Fly (Austin) 6(2): 108-122. PubMed Citation: 22634501

Freeman, M. R. and Doe, C. Q. (2001). Asymmetric Prospero localization is required to generate mixed neuronal/glial lineages in the Drosophila CNS. Development 128: 4103-4112. 11641232

Giesen, K., et al. (1997). Glial development in the Drosophila CNS requires concomitant activation of glial and repression of neuronal differentiation genes. Development 124 (12): 2307-2316. PubMed Citation: 9199357

Granderath, S., et al. (1999). loco encodes an RGS protein required for Drosophila glial differentiation. Development 126: 1781-1791. PubMed Citation: 10079238

Granderath, S., Bunse, I. and Klambt, C. (2000). gcm and pointed synergistically control glial transcription of the Drosophila gene loco. Mech. Dev. 91: 197-208. PubMed Citation: 10704844

Gho, M., Bellaiche, Y. and Schweisguth, F., (1999). Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126: 3573-3584. PubMed Citation: 10409503

Hidalgo, A. and Booth, G. E. (2000). Glia dictate pioneer axon trajectories in the Drosophila embryonic CNS. Development 127: 393-402. PubMed Citation: 10603355

Hogan, B. M., et al. (2004). Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Dev. Biol. 276: 508-522. 15581882

Hosoya, T., Takizawa, K., Nitta, K. and Hotta, Y. (1995). Glial functions in neuronal path findings revealed by a mutant, glial cells missing. Cell 82: 1025-1036. PubMed Citation: 7553844

Iwasaki, Y., et al. (2003). The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes. Development 130: 6027-6035. 14573516

Izergina, N., Balmer, J., Bello, B. Reichert, H. (2009). Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev. 4: 44. PubMed Citation: 20003348

Jones, B. W., Fetter, R.D., Tear, G. and Goodman, C.S. (1995). glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82: 1013-1023. PubMed Citation: 7553843

Jones, B. W. (2014). Characterization of missense alleles of the glial cells missing gene of Drosophila. Genesis [Epub ahead of print]. PubMed ID: 25044731

Kammerer, M. and Giangrande, A. (2001). Glide2, a second glial promoting factor in Drosophila melanogaster. EMBO J. 20: 4664-4673. 11532931

Kanemura, Y., et al. (1999). Isolation and expression analysis of a novel human homologue of the Drosophila glial cells missing (gcm) gene. FEBS Lett. 442(2-3): 151-6. PubMed Citation: 9928992

Kim, J., et al. (1998). Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc. Natl. Acad. Sci. 95(21): 12364-9. PubMed Citation: 9770492

Kim, H.J., Ahn, H.J., Lee, S., Kim, J.H., Park, J., Jeon, S.H. and Kim, S.H. (2015). Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system. Neuroscience 307:242-52. PubMed ID: 26318336

Laneve, P., Delaporte, C., Trebuchet, G., Komonyi, O., Flici, H., Popkova, A., D'Agostino, G., Taglini, F., Kerekes, I. and Giangrande, A. (2013). The Gcm/Glide molecular and cellular pathway: New actors and new lineages. Dev Biol 375: 65-78. PubMed ID: 23276603

Lebestky, T., et al. (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288: 146-149. PubMed Citation: 10753120

Lee, B. P. and Jones, B. W. (2005). Transcriptional regulation of the Drosophila glial gene repo. Mech. Dev. 122(6): 849-62. 1593923

Miller, A. A., Bernardoni, R. and Giangrande, A. (1998). Positive autoregulation of the glial promoting factor glide/gcm. EMBO J. 17(21): 6316-6326. PubMed Citation: 9799239

Murali, T., et al. (2011). DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res 39: D736-D743. PubMed Citation: 21036869

Nait-Oumesmar, B., et al. (2002). Ectopic expression of Gcm1 induces congenital spinal cord abnormalities. Development 129: 3957-3964. 12135932

Pereanu, W., Shy, D. and Hartenstein, V. (2005). Morphogenesis and proliferation of the larval brain glia in Drosophila, Dev. Biol. 283: 191-203. Medline abstract: 15907832

Pereanu, W., et al. (2011). A lineage-based analysis of the development of the central complex of the Drosophila brain. J. Comp. Neurol. 519: 661-689. PubMed Citation: 21246549

Ragone, G., Bernardoni, R. and Giangrande, A. (2001). A novel mode of asymmetric division identifies the fly neuroglioblast 6-4T. Dev. Bio. 235: 74-85. 11412028

Ragone, G., et al. (2003). Transcriptional regulation of glial cell specification. Dev. Bio. 255: 138-150. 12618139

Reifegerste, R., et al. (1999). mGCMa is a murine transcription factor that overrides cell fate decisions in Drosophila. Mech. Dev. 82(1-2): 141-150. PubMed Citation: 10354478

Schreiber, J., Sock, E. and Wegner, M. (1997). The regulator of early gliogenesis glial cells missing is a transcription factor with a novel type of DNA-binding domain. Proc. Natl. Acad. Sci. 94 (9): 4739-4744. PubMed Citation: 9114061

Schreiber, J., Enderich, J. and Wegner, M. (1998). Structural requirements for DNA binding of GCM proteins. Nucleic Acids Res. 26(10): 2337-43. PubMed Citation: 9580683

Sepp, K. J., Schulte, J. and Auld, V. J. (2000). Developmental dynamics of peripheral glia in Drosophila melanogaster. Glia 30: 122-133. PubMed Citation: 10719354

Shandala, T., Takizawa, K. and Saint, R. (2003). The dead ringer/retained transcriptional regulatory gene is required for positioning of the longitudinal glia in the Drosophila embryonic CNS. Development 130: 1505-1513. 12620977

Sorge, S., Ha, N., Polychronidou, M., Friedrich, J., Bezdan, D., Kaspar, P., Schaefer, M. H., Ossowski, S., Henz, S. R., Mundorf, J., Ratzer, J., Papagiannouli, F. and Lohmann, I. (2012). The cis-regulatory code of Hox function in Drosophila. EMBO J 31: 3323-3333. PubMed Citation: 22781127

Soustelle, L., et al. (2002). Terminal glial differentiation involves regulated expression of the excitatory amino acid transporters in the Drosophila embryonic CNS. Dev. Bio. 248: 294-306. 12167405

Soustelle, L., et al. (2004). Terminal tendon cell differentiation requires the glide/gcm complex. Development 131: 4521-4532. 15342477

Soustelle, L., et al. (2007). Neurogenic role of Gcm transcription factors is conserved in chicken spinal cord. Development 134: 625-634. Medline abstract: 17215311

Stecca, B., et al. (2002). Gcm1 expression defines three stages of chorio-allantoic interaction during placental development. Mech. Dev. 115: 27-34. 12049764

Takizawa, K. and Hotta, Y. (2001). Pathfinding analysis in a glia-less gcm mutant in Drosophila. Dev. Genes Evol. 211: 30-36. 11277403

Tuerk, E. E., Schreiber, J. and Wegner, M. (2000). Protein stability and domain topology determine the transcriptional activity of the mammalian glial cells missing homolog, GCMb. J. Biol. Chem. 275: 4774-4782. PubMed Citation: 10671510

Udolph, G., Rath, P. and Chia, W. (2001). A requirement for Notch in the genesis of a subset of glial cells in the Drosophila embryonic central nervous system which arise through asymmetric divisions. Development 128: 1457-1466. 11262244

Umesono, Yl, Hiromi, Y. and Hotta, Y. (2002). Context-dependent utilization of Notch activity in Drosophila glial determination. Development 129: 2391-2399. 11973271

Van De Bor, V., Walther, R. and Giangrande, A. (2000). Some fly sensory organs are gliogenic and require glide in a precursor that divides symmetrically and produces glial cells. Development 127: 3735-3743. 10934018

Van De Bor, V. and Giangrande, A. (2001). Notch signaling represses the glial fate in fly PNS. Development 128: 1381-1390. 11262238

Van De Bor, V, et al. (2002). Precocious expression of the Glide/Gcm glial-promoting factor in Drosophila induces neurogenesis. Genetics 160: 1095-1106. 11901125

Viktorin, G., et al. (2011). Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev. Biol. 356(2): 553-65. PubMed Citation: 21708145

Vincent, S., Vonesch, J. L, Giangrande, A., (1996). Glide directs glial fate commitment and cell fate switch between neurones and glia. Development 122: 131-139. PubMed Citation: 8565824

von Hilchen, C. M., et al. (2008). Identity, origin, and migration of peripheral glial cells in the Drosophila embryo. Mech. Dev. 125: 337-352. PubMed Citation: 18077143

Yamada, K., et al. (1999). A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J. Biol. Chem. 274(45): 32279-86. PubMed Citation: 10542267

Yoshida, S., et al. (2005). DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of Drosophila. Development 132(20): 4587-98. 16176948

Yuasa, Y., et al. (2003). Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors. Development 130: 2419-2428. 12702656

glial cells missing: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation | References

date revised: 5 November 2015

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.