atonal


REFERENCES

Aerts, S., et al. (2009). Integrating computational biology and forward genetics in Drosophila. PLoS Genet. 5(1): e1000351. PubMed Citation: 19165344

Aerts, S., et al. (2010). Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification. PLoS Biol. 8(7): e1000435. PubMed Citation: 20668662

Akazawa, C., Ishibashi, M., Shimizu, C., Nakanishi, S. and Kageyama, R. (1995). A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270(15): 8730-38. PubMed Citation: 7721778

Baker, N. E., Yu, S. and Han, D. (1996). Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr. Biol. 6(10): 1290-301. PubMed Citation: 8939576

Baonza, A., Casci, T. and Freeman, M. (2001a). A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye. Curr. Biol. 11: 396-404. 11301250

Baonza, A. and Freeman, M. (2001b). Notch signaling and the initiation of neural development in the Drosophila eye. Development 128: 3889-3898. 11641214

Ben-Arie, N., et al. (1997). Math1 is essential for genesis of cerebellar granule neurons. Nature 390: 169-172. PubMed Citation: 9367153

Ben-Arie, N., et al. (2000). Functional conservation of atonal and Math1 in the CNS and PNS. Development 127: 1039-1048. PubMed Citation: 10662643

Bermingham, N. A., et al. (2001). Proprioceptor pathway development is dependent on MATH1. Neuron 30: 411-422. 11395003

Brown, N. L., et al. (1996). daughterless is required for Drosophila photoreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev. Biol. 179: 65-78. PubMed Citation: 8873754

Brown, N. L., et al. (1998). Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125(23): 4821-4833. PubMed Citation: 9806930

Brown, N. L., et al. (2001). Math5 is required for retinal ganglion cell and optic nerve formation. Development 128: 2497-2508. 11493566

Brown, K. E., Baonza, A. and Freeman, M. (2006). Epithelial cell adhesion in the developing Drosophila retina is regulated by Atonal and the EGF receptor pathway. Dev. Biol. 300(2): 710-21. Medline abstract: 16963016

Butts, T., Hanzel, M. and Wingate, R. J. (2014). Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression. Development 141: 2791-2795. PubMed ID: 25005474

Cachero, S., et al. (2011). The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons. PLoS Biol. 9(1): e1000568. PubMed Citation: 21283833

Chanut, F., Luk, A. and Heberlein, U. (2000). A screen for dominant modifiers of roDom, a mutation that disrupts morphogenetic furrow progression in Drosophila, identifies groucho and hairless as regulators of atonal expression Genetics 156(3): 1203-17. 11063695

Chen, P., et al. (2002). The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129: 2495-2505. PubMed Citation: 11973280

Chien, C.-T., et al. (1996). Neuronal type information encoded in the basic-helic-loop-helix domain of proneural genes. Proc. Natl. Acad. Sci. 93: 13239-44. PubMed Citation: 8917575

Cho, J. H., Klein, W. H. and Tsai, M. J. (2007). Compensational regulation of bHLH transcription factors in the postnatal development of BETA2/NeuroD1-null retina. Mech. Dev. 124(7-8): 543-50. PubMed citation: 17629466

Daniel, A., Dumstrei, K., Lengyel, J. A. and Hartenstein, V. (1999). The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 126: 2945-2954. PubMed Citation: 10357938

del Corral, R. D., Breitkreuz, D. N. and Storey, K. G. (2002). Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signaling. Development 129: 1681-1691. 11923204

Distefano, G. M., et al. (2012). Drosophila lilliputian is required for proneural gene expression in retinal development. Dev. Dyn. 241(3): 553-62. PubMed Citation: 22275119

Dokucu, M. E., Zipursky, S. L. and Cagan, R. L. (1996). Atonal, Rough and the resolution of proneural clusters in the developing Drosophila retina Development 122: 4139-4147. PubMed Citation: 9012533

Dominguez, M. (1999). Dual role for Hedgehog in the regulation of the proneural gene atonal during ommatidia development. Development 126: 2345-2353. PubMed Citation: 10225994

Dong, P. D. S., Dicks. J. S. and Panganiban, G. (2002). Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129: 1967-1974. 11934862

Du, H. and Chalfie, M. (2001). Genes regulating touch cell development in Caenorhabditis elegans. Genetics 158: 197-207. 11333230

Duval, N., Daubas, P., Bourcier de Carbon, C., St Cloment, C., Tinevez, J. Y., Lopes, M., Ribes, V. and Robert, B. (2014). Msx1 and Msx2 act as essential activators of Atoh1 expression in the murine spinal cord. Development 141: 1726-1736. PubMed ID: 24715462

Ebert, P. J., et al. (2003). Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation. Development 130: 1949-1959. 12642498

Forget, A., Bihannic, L., Cigna, S. M., Lefevre, C., Remke, M., Barnat, M., Dodier, S., Shirvani, H., Mercier, A., Mensah, A., Garcia, M., Humbert, S., Taylor, M. D., Lasorella, A. and Ayrault, O. (2014). Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev Cell 29: 649-661. PubMed ID: 24960692

Frankfort, B. J., et al. (2001). senseless repression of rough is required for r8 photoreceptor differentiation in the developing Drosophila eye. Neuron 32: 403-414. 11709152

Fujiyama, T., et al. (2009). Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136(12): 2049-58. PubMed Citation: 19439493

Garcia-Alonso, L. VanBerkum, M., Grenningloh, G., Schuster, C. and Goodman, C.S. (1995). Fasciclin II controls proneural gene expression in Drosophila. Proc. Natl. Acad. Sci. 92: 10501-10505. PubMed Citation: 7479828

Gazit, R., Krizhanovsky, V., and Ben-Arie, N. (2004). Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development 131: 903-913. 14757642

Goulding, S. E., zur Lage, P. and Jarman, A. P. (2000a). amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25: 69-78. PubMed Citation: 10707973

Goulding, S. E., White, N. M. and Jarman, A. P. (2000b). cato encodes a basic helix-loop-helix transcription factor implicated in the correct differentiation of Drosophila sense organs. Dev. Biol. 221: 120-131. PubMed Citation: 10772796

Gowan, K., et al. (2001). Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31: 219-232. 11502254

Gradwohl, G., Fode, C. and Guillemot, F. (1996). Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev. Biol. 180: 227-241. PubMed Citation: 8948587

Green, M. J., Myat, A. M., Emmenegger, B. A., Wechsler-Reya, R. J., Wilson, L. J. and Wingate, R. J. (2014). Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 141: 389-398. PubMed ID: 24381197

Greenwood, S. and Struhl, G. (1999). Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126: 5795-5808. PubMed Citation: 10572054

Grillenzoni, N., et al. (2007). Role of proneural genes in the formation of the larval olfactory organ of Drosophila. Dev. Genes Evol. 217: 209-219. PubMed citation: 17260155

Gupta, B. P. and Rodrigues, V. (1997). Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells 2(3): 225-33. PubMed Citation: 9189759

Gutzwiller, L. M., et al. (2010). Proneural and abdominal Hox inputs synergize to promote sensory organ formation in the Drosophila abdomen. Dev. Biol. 348(2): 231-43. PubMed Citation: 20875816

Hassan, B. A., et al. (2000). atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 25: 549-561. PubMed Citation: 10774724

Hatakeyama, J., et al. (2001). Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128: 1313-1322. 11262232

Helms, A. and Johnson, J. (1998). Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 125(5): 919-928. PubMed Citation: 9449674

Helms, A. W., et al. (2000). Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127: 1185-1196. PubMed Citation: 10683172

Holohan, E. E., zur Lage, P. I. and Jarman, A. P. (2006). Multiple enhancers contribute to spatial but not temporal complexity in the expression of the proneural gene, amos. BMC Dev. Biol. 6: 53. PubMed citation: 17094800

His, W. (1891). Die Entwicklung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. I. Verlangertes Mark. Abhandlungen der koniglicher sachsischen Gesellschaft der Wissenschaften, Mathematische-physikalische Klasse 29. pp. 1-74 . PubMed Citation:

Huang, M.-L., Hsu, C.-H. and Chien, C.-H. (2000). The proneural gene amos promotes multiple dendritic neuron formation in the Drosophila peripheral nervous. PubMed Citation: 10707972 system. Neuron 25: 57-67.

Hutcheson, D. A. and Vetter, M. L. (2001). The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor. Dev. Bio. 232: 327-338 . PubMed Citation: 11401395

Hutcheson, D. A., et al. (2005). bHLH-dependent and -independent modes of Ath5 gene regulation during retinal development. Development 132: 829-839. 15677728

Inoue, T., et al. (2002). Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129: 831-842. 11861467

Jarmon, A.P., Grau, Y., Jan, L.Y. and Jan, Y.N. (1993). atonal is a proneural gene that directs chordontonal organ formation in the Drosophila peripheral nervous system. Cell, 73(7): 1307-21. PubMed Citation: 8324823

Jarmon, A.P., Grell, E.H., Ackerman, L., Jan, L.Y. and Jan, Y.N. (1994). atonal is the proneural gene for Drosophila photoreceptors. Nature 369(6479): 398-400. PubMed Citation: 8196767

Jarmon, et al. (1995). Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121:2019-2030. PubMed Citation: 7635049

Jarman, A. P. and Ahmed, I. (1998). The specificity of proneural genes in determining Drosophila sense organ identity. Mech. Dev. 76(1-2): 117-25. PubMed Citation: 9767145.

Jhaveri, D., Sen, A. and Rodrigues, V. (2000a). Mechanisms underlying olfactory neuronal connectivity in Drosophila -- The Atonal lineage organizes the periphery while sensory neurons and glia pattern the olfactory lobe. Dev. Biol. 226: 73-87. PubMed Citation: 10993675

Jhaveri, D., et al. (2000b). Sense organ identity in the Drosophila antenna is specified by the expression of the proneural gene atonal. Mech. Dev. 99: 101-111. PubMed Citation: 11091078.

Jhaveri, D. and Rodrigues, V. (2002). Sensory neurons of the Atonal lineage pioneer the formation of glomeruli within the adult Drosophila olfactory lobe Development 129: 1251-1260. 11874920

Kanekar, S., et al. (1997). Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19(5): 981-994. PubMed Citation: 9390513

Karandikar, U. C., Jin, M., Jusiak, B., Kwak, S., Chen, R. and Mardon, G. (2014). Drosophila eyes absent is required for normal cone and pigment cell development. PLoS One 9: e102143. PubMed ID: 25057928

Kay, J. N., et al. (2001). Retinal ganglion cell genesis requires lakritz, a zebrafish atonal homolog. Neuron 30: 725-736. 11430806

Kay, J. N., Link, B. A. and Baier, H. (2005). Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development 132(11): 2573-85. 15857917

Kim, P., et al. (1997). XATH-1, a vertebrate homolog of Drosophila atonal, induces a neuronal differentiation within ectodermal progenitors. Dev. Biol. 187(1): 1-12. PubMed Citation: 9224669

Kim, T. H., Li, F., Ferreiro-Neira, I., Ho, L. L., Luyten, A., Nalapareddy, K., Long, H., Verzi, M. and Shivdasani, R. A. (2014). Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 506: 511-515. PubMed ID: 24413398

Kubo, F., Takeichi, M. and Nakagawa, S. (2005). Wnt2b inhibits differentiation of retinal progenitor cells in the absence of Notch activity by downregulating the expression of proneural genes. Development 132(12): 2759-70. 15901663

Kumar, J. P., Hsiung, F., Powers, M. A. and Moses, K. (2003). Nuclear translocation of activated MAP kinase is developmentally regulated in the developing Drosophila eye. Development 130: 3703-3714. 12835387

Laurençon, A., et al. (2007). Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biol. 8(9): R195. PubMed Citation: 17875208

Li, S., Mo, Z., Yang, X., Price, S. M., Shen, M. M. and Xiang, M. (2004). Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43(6): 795-807. 15363391

Li, Y. and Baker, N. E. (2001). Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. PubMed Citation: 11267869 Curr. Biol. 11: 330-338

Li-Kroeger, D. et al. (2008). Hox and senseless antagonism functions as a molecular switch to regulate EGF secretion in the Drosophila PNS. Dev. Cell 15: 298-308. PubMed Citation: 18694568

Ligoxygakis, P., et al. (1998). A subset of Notch functions during Drosophila eye development require Su(H) and the E(spl) gene complex. Development 125(15): 2893-2900. PubMed Citation: 9655811

Lim, J. and Choi, K.-W. (2004). Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila. Development 131: 5573-5580. 15496446

Lim, J., Jafar-Nejad, H., Hsu, Y. C. and Choi, K. W. (2008). Novel function of the class I bHLH protein Daughterless in the negative regulation of proneural gene expression in the Drosophila eye. EMBO Rep. 9(11): 1128-33. PubMed Citation: 18758436

Liu, W., Mo, Z. and Xiang, M. (2001). The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc. Natl. Acad. Sci. 98: 1649-1654. 11172005

Liu, Y., Helms, A. W. and Johnson, J. E. (2004). Distinct activities of Msx1 and Msx3 in dorsal neural tube development. Development 131: 1017-1028. 14973289

Machold, R. and Fishel, G. (2005). Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48: 17-24. 16202705

Makhijani, K., et al. (2011). The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 138(24): 5379-91. PubMed Citation: 22071105

Mao, C. A., Wang, S. W., Pan, P. and Klein, W. H. (2008). Rewiring the retinal ganglion cell gene regulatory network: Neurod1 promotes retinal ganglion cell fate in the absence of Math5. Development 135(20): 3379-88. PubMed Citation: 18787067

Masai, I., et al. (2000). Midline signals regulate retinal neurogenesis in zebrafish. Neuron 27: 251-263. PubMed Citation: 10985346

Matter-Sadzinski, L., et al. (2005). A bHLH transcriptional network regulating the specification of retinal ganglion cells. Development 132(17): 3907-21. 16079155

Matter-Sadzinski, L., et al. (2001). Specification of neurotransmitter receptor identity in developing retina: the chick ATH5 promoter integrates the positive and negative effects of several bHLH proteins. Development 128: 217-231 . PubMed Citation: 11124117

Maung, S. M. T. W. and Jarman, A. P. (2007). Functional distinctness of closely related transcription factors: A comparison of the Atonal and Amos proneural factors Mech. Dev. 124: 647-656. PubMed citation: 17709231

Merritt, D. J. and Whitington, P. M. (1995). Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function. J. Neurosci. 15: 1755-1767. 7891133

Millimaki, B. B., Sweet, E. M., Dhason, M. S. and Riley, B. B. (2007). Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134(2): 295-305. Medline abstract: 17166920

Mumm, J. S., Williams, P. R., Godinho, L., Koerber, A., Pittman, A. J., Roeser, T., Chien, C. B., Baier, H. and Wong, R. O. (2006). In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52: 609-621. PubMed Citation: 17114046

Nagel, A. C. and Preiss, A. (1999). Notchspl is deficient for inductive processes in the eye, and E(spl)D Enhances split by interfering with proneural activity. Dev. Biol. 208(2): 406-415. PubMed Citation: 10191054

Nakada, Y., Hunsaker, T. L., Henke, R. M. and Johnson, J. E. (2004). Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development 131(6): 1319-30. 14993186

Neubueser, D. and Hipfner, D. R. (2010). Overlapping roles of Drosophila Drak and Rok kinases in epithelial tissue morphogenesis. Mol Biol Cell 21: 2869-2879. PubMed ID: 20573980

Nolo, R., Abbott, L. A. and Bellen, H. J. (2000), Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell. 102(3): 349-62. 10975525

Okabe, M. and Okano, H. (1997). Two-step induction of chordotonal organ precursors in Drosophila embryogenesis. Development 124: 1045-1053. PubMed Citation: 9056779

Parras, C., et al. (1996). Control of neural precursor specification by proneural proteins in the CNS of Drosophila. EMBO J. 15: 6394-99. PubMed Citation: 8978666

Parrish, J. Z., Kim, M. D., Jan, L. Y. and Jan, Y. N. (2006). Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev. 20(7): 820-35. Medline abstract: 16547170

Pepple, K. L., et al. (2008). Two-step selection of a single R8 photoreceptor: a bistable loop between senseless and rough locks in R8 fate. Development 135(24): 4071-9. PubMed Citation: 19004852

Perron, M., et al. (1999). X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina. Proc. Natl Acad. Sci. 96: 14996-15001. PubMed Citation: 10611326.

Poggi, L., et al. (2004). The homeobox gene Xbh1 cooperates with proneural genes to specify ganglion cell fate within the Xenopus neural retina. Development 131: 2305-2315. 15102701

Portman, D. S. and Emmons, S. W. (2000). The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127: 5415-5426. PubMed Citation: 11076762

Powell, P. A., et al. (2001). Scabrous complexes with Notch to mediate boundary formation. Nature 409: 626-630. 11214322

Powell, L. M., zur Lage, P. I., Prentice, D. R. A., Senthinathan, B. and Jarman, A. P. (2004). The proneural proteins Atonal and Scute regulate neural target genes through Different E-Box binding sites. Mol. Cell. Biol. 24: 9517-9526. 15485919

Powell, L. M., Deaton, A. M., Wear, M. A. and Jarman, A. P. (2008). Specificity of Atonal and Scute bHLH factors: analysis of cognate E box binding sites and the influence of Senseless. Genes Cells 13(9): 915-29. PubMed Citation: 18681894

Quan, X. J., et al. (2004). Evolution of neural precursor selection: functional divergence of proneural proteins. Development 131: 1679-1689. PubMed Citation: 15084454

Ray, K. and Rodrigues, V. (1995). Cellular events during the development of the olfactory sense organs in Drosophila melanogaster. Dev. Biol. 167: 426-438. PubMed Citation: 7875369

Reddy, G. V., et al. (1997). Development of the Drosophila olfactory sense organs utilizes cell-cell interactions as well as lineage. Development 124, 703-712 . PubMed Citation: 9043085

Riesenberg, A. N., Le, T. T., Willardsen, M. I., Blackburn, D. C., Vetter, M. L. and Brown, N. L. (2009). Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis 47: 175-187. PubMed Citation: 19208436

Robertson, F., Pinal, N., Fichelson, P. and Pichaud, F. (2012). Atonal and EGFR signalling orchestrate rok- and Drak-dependent adherens junction remodelling during ommatidia morphogenesis. Development 139: 3432-3441. PubMed ID: 22874916

Rosay, P., Colas, J. F., and Maroteaux, L. (1995). Dual organization of the Drosophila neuropeptide receptor NKD gene promoter. Mech Dev 51: 329-339. PubMed Citation: 7547478

Roztocil, T., et al. (1997). NeuroM, a neural helix-loop-helix transcription factor, defines a new transition stage in neurogenesis. Development 124(17): 3263-3272. PubMed Citation: 9310321

Saba, R., Johnson, J. E. and Saito, T. (2005). Commissural neuron identity is specified by a homeodomain protein, Mbh1, that is directly downstream of Math1. Development 132: 2147-2155. 15788459

Sassa, T., Aizawa, H. and Okamoto, H. (2007). Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems. Dev. Dyn. 236(3): 706-18. Medline abstract: 17279576

Schlatter, R. and Maier, D. (2005). The Enhancer of split and Achaete-Scute complexes of Drosophilids derived from simple ur-complexes preserved in mosquito and honeybee. BMC Evol. Biol. 5: 67. 16293187

Schrader, S. and Merritt, D. J. (2000). Central projections of Drosophila sensory neurons in the transition from embryo to larva. J. Comp. Neurol. 425: 34-44. 10940940

Apitz, H. and Salecker, I. (2015). A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat Neurosci 18: 46-55. PubMed ID: 25501037

Sen, A., Kuruvilla, D., Pinto, L., Sarin, A. and Rodrigues, V. (2004). Programmed cell death and context dependent activation of the EGF pathway regulate gliogenesis in the Drosophila olfactory system. Mech. Dev. 121: 65-78. 14706701

Sharma, A., et al. (1999). The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol. Cell. Biol. 19(1): 704-13. PubMed Citation: 9858593

Shimizu, C., Akazawa, C., Nakanishi, S. and Kageyama, R. (1995). MATH-2, a mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal, is specifically expressed in the nervous system. Eur. J. Biochem. 229(1): 239-48. PubMed Citation: 7744035

Shroyer, N. F., Wallis, D., Venken, K. J., Bellen, H. J. and Zoghbi, H. Y. (2005). Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 19: 2412-2417. 16230531

Simoes Sde, M., Blankenship, J. T., Weitz, O., Farrell, D. L., Tamada, M., Fernandez-Gonzalez, R. and Zallen, J. A. (2010). Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell 19: 377-388. PubMed ID: 20833361

Skowronska-Krawczyk, D., et al. (2004). Highly specific interactions between bHLH transcription factors and chromatin during retina development. Development 131: 4447-4454. 15342472

Skowronska-Krawczyk, D., et al. (2009). Conserved regulatory sequences in Atoh7 mediate non-conserved regulatory responses in retina ontogenesis. Development 136(22): 3767-77. PubMed Citation: 19855019

Spencer, S. A., et al. (1998). Regulation of EGF receptor signaling establishes pattern across the developing Drosophila retina. Development 125: 4777-4790 . PubMed Citation: 9806926

Sun, Y., Jan, L. Y. and Jan, Y. N. (1998). Transcriptional regulation of atonal during development of the Drosophila peripheral nervous system. Development 125(18): 3731-3740. PubMed Citation: 9716538

Sun, Y., Jan, L. Y. and Jan, Y. N. (2000). Ectopic scute induces Drosophila ommatidia development without R8 founder photoreceptors. Proc. Natl. Acad. Sci. 97: 6815-6819. PubMed Citation: 10823908

Suzuki, T. and Saigo, K. (2000). Transcriptional regulation of atonal required for Drosophila larval eye development by concerted action of Eyes absent, Sine oculis and Hedgehog signaling independent of Fused kinase and Cubitus interruptus. Development 127: 1531-1540. PubMed Citation: 10704398

Takebayashi, K., et al. (1997). Conversion of ectoderm into a neural fate by ATH-3 a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal. EMBO J. 16: 384-395. PubMed Citation: 9029157

Tanaka-Matakatsu, M. and Du, W. (2008). Direct control of the proneural gene atonal by retinal determination factors during Drosophila eye development. Dev. Biol. 313(2): 787-801. PubMed Citation: 18083159

Tauber, E. and Eberl, D. F. (2001). Song production in auditory mutants of Drosophila: the role of sensory feedback. J Comp Physiol [A] 187(5): 341-8. 11529478

Tessmar, K., Loosli, F. and Wittbrodt, J. (2002). A screen for co-factors of Six3. Mech. Dev. 117: 103-113. 12204251

Tomita, K., et al. (2000). Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 19: 5460-5472. PubMed Citation: 11032813

Tsuda, H., et al. (1998). Structure and promoter analysis of Math3 gene, a mouse homolog of Drosophila proneural gene atonal. Neural-specific expression by dual promoter elements. J. Biol. Chem. 273(11): 6327-6333. PubMed Citation:

VanDussen, K. L. and Samuelson, L. C. (2010). Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev. Biol. 346(2): 215-23. PubMed Citation: 20691176

Wang, S. W., et al. (2001). Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 15: 24-29. 11156601

Wang, V. Y., et al. (2002). Drosophila atonal fully rescues the phenotype of Math1 null mice: New functions evolve in new cellular contexts Cur. Biol. 12: 1611-1616. 12372255

Wang, V. Y., Rose, M. F. and Zoghbi, H. Y. (2005). Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48: 31-43. 16202707

White, N. M. and Jarman, A. P. (2000). Drosophila Atonal controls photoreceptor R8-specific properties and modulates both Receptor Tyrosine Kinase and Hedgehog signaling. Development 127: 1681-1689. PubMed Citation: 10725244

Willardsen, M. I., Suli, A., Pan, Y., Marsh-Armstrong, N., Chien, C. B., El-Hodiri, H., Brown, N. L., Moore, K. B. and Vetter, M. L. (2009). Temporal regulation of Ath5 gene expression during eye development. Dev. Biol. 326: 471-481. PubMed Citation: 19059393

Witt, L. M. et al. (2010). Atonal, senseless, and abdominal-A regulate rhomboid enhancer activity in abdominal sensory organ precursors. Dev. Biol. 344: 1060-1070. PubMed Citation: 20478292

Yu, L., Zhou, Q., Zhang, C. and Pignoni, F. (2012). Identification of Bombyx atonal and functional comparison with the Drosophila atonal proneural factor in the developing fly eye. Genesis 50(5): 393-403. PubMed Citation: 21998072

Zhang, T., et al. (2006). Direct control of neurogenesis by selector factors in the fly eye: regulation of atonal by Ey and So. Development 133(24): 4881-9. Medline abstract: 17108002

Zheng, J. L. and Gao, W.-Q. (2000a). Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nature Neurosci. 3:580-586. PubMed Citation: 10816314

Zheng, J. L., et al. (2000b). Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127: 4551-4560. PubMed Citation: 11023859

Zlatic, M., Landgraf, M. and Bate, M. (2003). Genetic specification of axonal arbors: atonal regulates robo3 to position terminal branches in the Drosophila nervous system. Neuron 37: 41-51. 12526771

Zhou, Q., Zhang, T., Jemc, J. C., Chen, Y., Chen, R., Rebay, I. and Pignoni, F. (2013). Onset of atonal expression in Drosophila retinal progenitors involves redundant and synergistic contributions of Ey/Pax6 and So bindings sites within two distant enhancers. Dev Biol. 386(1): 152-64. PubMed ID: 24247006

zur Lage, P., Jan, Y. N. and Jarman, A. P. (1997). Requirement for EGF receptor signalling in neural recruitment during formation of Drosophila chordotonal sense organ clusters. Curr. Biol. 7: 166-175. PubMed Citation: 9395407

zur Lage, P. and Jarman, A. P. (1999). Antagonism of EGFR and Notch signalling in the reiterative recruitment of Drosophila adult chordotonal sense organ precursors. Development 126: 3149-3157. PubMed Citation: 10375505

zur Lage, P. I., et al. (2003). The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development 130: 4683-4693. 12925594

zur Lage, P. I., et al. (2004). EGF receptor signaling triggers recruitment of Drosophila sense organ precursors by stimulating proneural gene autoregulation. Dev. Cell 7: 687-696. 15525530

zur Lage, P. I. and Jarman, A. P. (2010). The function and regulation of the bHLH gene, cato, in Drosophila neurogenesis. BMC Dev. Biol. 10: 34. PubMed Citation: 20346138


atonal: Biological Overview | Evolutionary Homologs | Regulation | Targets of Activity and Protein Interactions | Developmental Biology | Effects of Mutation

date revised: 25 March 2015

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.