InteractiveFly: GeneBrief

Spinophilin: Biological Overview | References


Gene name - Spinophilin

Synonyms -

Cytological map position - 62E4-62E5

Function - Scaffolding protein

Keywords - Neurexin/Neuroligin signalling, control of synaptic active zone number and functionality, a Protein-phosphatase 1 (PP1) targeting protein

Symbol - Spn

FlyBase ID: FBgn0010905

Genetic map position - chr3L:2,508,047-2,554,292

Classification - PDZ domain protein, Sterile alpha motif

Cellular location - intracellular



NCBI links: Precomputed BLAST | EntrezGene
BIOLOGICAL OVERVIEW

Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic Neurexin/Neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to Neurexin. This study reports that the scaffold protein spinophilin binds to the C-terminal portion of Neurexin and is needed to limit Neurexin/Neuroligin signalling by acting antagonistic to Syd-1 (RhoGAP100F). Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/Neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. It is concluded that presynaptic Spinophilin fine-tunes Neurexin/Neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis (Muhammad, 2015).

Chemical synapses release synaptic vesicles (SVs) at specialized presynaptic membranes, so-called active zones (AZs), which are characterized by electron-dense structures, reflecting the presence of extended molecular protein scaffolds. These AZ scaffolds confer stability and facilitate SV release. Importantly, at individual AZs, scaffold size is found to scale with the propensity to engage in action potential-evoked release. An evolutionarily conserved set of large multi-domain proteins operating as major building blocks for these scaffolds has been identified over the last years: Syd-2/Liprin-α, RIM, RIM-binding-protein (RBP) and ELKS family proteins (of which the the Drosophila homologue is called Bruchpilot (BRP)). However, how presynaptic scaffold assembly and maturation are controlled and coupled spatiotemporally to the postsynaptic assembly of neurotransmitter receptors remains largely unknown, although trans-synaptic signalling via Neurexin-1 (Nrx-1)-Neuroligin-1 (Nlg1) adhesion molecules is a strong candidate for a conserved 'master module' in this context, based on Nrx-Nlg signalling promoting synaptogenesis in vitro, synapses of rodents, Caenorhabditis elegans and Drosophila (Muhammad, 2015).

With respect to scaffolding proteins, Syd-1 was found to promote synapse assembly in C. elegans, Drosophila and rodents. In Drosophila, the Syd-1-PDZ domain binds the Nrx-1 C terminus and couples pre- with postsynaptic maturation at nascent synapses of glutamatergic neuromuscular junctions (NMJs) in Drosophila larvae. Syd-1 cooperates with Nrx-1/Nlg1 to stabilize newly formed AZ scaffolds, allowing them to overcome a 'threshold' for synapse formation. Additional factors tuning scaffold assembly, however, remain to be identified. This study shows that the conserved scaffold protein spinophilin (Spn) is able to fine-tune Nrx-1 function by binding the Nrx-1 C terminus with micromolar affinity via its PDZ domain. In the absence of presynaptic Spn, 'excessive seeding' of new AZs occurred over the entire NMJ due to elevated Nrx-1/Nlg1 signalling. Apart from structural changes, this study shows that Spn plays an important role in neurotransmission since it is essential to establish proper SV release probability, resulting in a changed ratio of spontaneous versus evoked release at Spn NMJ terminals. The trans-synaptic dialogue between Nrx-1 and Nlg1 aids in the initial assembly, specification and maturation of synapses, and is a key component in the modification of neuronal networks. Regulatory factors and processes that fine-tune and coordinate Nrx-1/Nlg1 signalling during synapse assembly process are currently under investigation. These data indicate that Drosophila Spn-like protein acts presynaptically to attenuate Nrx-1/Nlg1 signalling and protects from excessive seeding of new AZ scaffolds at the NMJ. In Spn mutants, excessive AZs suffered from insufficient evoked release, which may be partly explained by their reduced size, and partly by a genuine functional role of Spn (potentially mediated via Nrx-1 binding). In mice, loss of Spn (Neurabin II), one of the two Neurabin protein families present in mammals, was reported to provoke a developmental increase in synapse numbers (Feng, 2000). While Spinophilin was found to be expressed both pre- and post-synaptically (Muly, 2004a; Muly, 2004b), its function, so far, has only been analysed in the context of postsynaptic spines (Feng, 2000; Terry-Lorenzo 2005; Allen, 2006; Sarrouilhe, 2005). Given the conserved Spn/Nrx-1 interaction reported in this study, Spn family proteins might execute a generic function in controlling Nrx-1/Nlg1-dependent signalling during synapse assembly (Muhammad, 2015).

This study consistently found that Spn counteracts another multi-domain synaptic regulator, Syd-1, in the control of Nrx-1/Nlg1 signalling. Previous genetic work in C. elegans identified roles of Syd-1 epistatic to Syd-2/Liprin-α in synaptogenesis. Syd-1 also operates epistatic to Syd-2/Liprin-α at Drosophila NMJs. Syd-1 immobilizes Nrx-1, positioning Nlg1 at juxtaposed postsynaptic sites, where it is needed for efficient incorporation of GluR complexes. Intravital imaging suggested an early checkpoint for synapse assembly, involving Syd-1, Nrx-1/Nlg1 signalling and oligomerization of Liprin-α in the formation of an early nucleation lattice, which is followed later by ELKS/BRP-dependent scaffolding events. As Spn promotes the diffusional motility of Nrx-1 over the terminal surface and limits Nrx-1/Nlg1 signalling, and as its phenotype is reversed by loss of a single gene copy of nrx-1, nlg1 or syd-1, Spn displays all the features of a 'negative' element mounting, which effectively sets the threshold for AZ assembly. As suggested by FRAP experiments, Spn might withdraw a population of Nrx-1 from the early assembly process, establishing an assembly threshold that ensures a 'typical' AZ design and associated postsynaptic compartments. As a negative regulatory element, Spn might allow tuning of presynaptic AZ scaffold size and function (Muhammad, 2015).

The C. elegans Spn homologue NAB-1 (NeurABin1) was previously shown to bind Syd-1 in cell culture recruitment assays (Chia, 2012). This study found consistent evidence for Syd-1/Nrx-1/Spn tripartite complexes in salivary gland experiments. Moreover, the PDZ domain containing regions of Spn and Syd-1 interacted in Y2H experiments. It would be interesting to dissect whether the interaction of Spn/Syd-1 plays a role in controlling the access of Nrx-1 to one or both factors. For C. elegans HSN synapses, a previous study showed that loss of NAB-1 results in a deficit of synaptic markers, such as Syd-1 and Syd-2/Liprin-α, while NAB-1 binding to F-actin was also found to be important for synapse assembly. Though at first glance rather contradictory to the results described in this study, differences might result from Chia (2012) studying synapse assembly executed over a short time window, when partner cells meet for the first time. In contrast, this study used a model (Drosophila larval NMJs) where an already functional neuronal terminal adds novel AZs. Despite the efforts of this study, no role of F-actin in the assembly of AZs of late larval Drosophila NMJs was demonstrated. F-actin patches might be particularly important to establish the first synaptic contacts between partner cells. Both the study by Chia et al. and this study, however, point clearly towards important regulatory roles of Spn family members in the presynaptic control of synapse assembly. Further, this study described a novel interaction between the Spn-PDZ domain and the intracellular C-term of Nrx-1 at the atomic level. Interestingly, it was found that all functions of Spn reported in this study, structural as well as functional, were strictly dependent on the ligand-binding integrity of this PDZ domain. It is noteworthy that the Spn-PDZ domain binds other ligands as well, for example, Kalirin-7 and p70S6K , and further elucidation of its role as a signal 'integrator' in synapse plasticity should be interesting. The fact that Nrx-1 levels were increased at Spn NMJs and, most importantly, that genetic removal of a single nrx-1 gene copy effectively suppressed the Spn AZ phenotype, indicates an important role of the Spn/Nrx-1 interaction in this context. Affinity of Spn-PDZ for the Nrx-1 C-term was somewhat lower than that of the Syd-1-PDZ, both in ITC and Y2H experiments. Nonetheless, overexpression of Spn was successful in reducing the targeting effect of Syd-1 on overexpressed Nrx-1GFP. It will be interesting to see whether this interaction can be differentially regulated, for example, by (de)phosphorylation. It is worth noting that apart from Syd-1 and Spn, several other proteins containing PDZ domains, including CASK, Mint1/X11, CIPP and Syntenin, were found to bind to the Nrxs C-termini. CASK was previously shown to interact genetically with Nrx-1, controlling endocytic function at Drosophila NMJs. However, when this study tested for an influence of CASK on Nrx-1GFP motility using FRAP, genetic ablation of CASK had no effect (Muhammad, 2015).

Thus, CASK function seemingly resembles neither Syd-1 nor Spn. Clearly, future work will have to address and integrate the role of other synaptic regulators converging on the Nrx-1 C-term. In particular, CASK (which displays a kinase function that phosphorylates certain motifs within the Nrx-1 C-term) might alternately control Spn- and Syd-1-dependent functions. Presynaptic Nrx-1, through binding to postsynaptic Nlg1 at developing Drosophila NMJ terminals, is important for the proper assembly of new synaptic sites. It is of note, however, that while mammalian Nrxs display robust synaptogenetic activity in cellular in vitro systems, direct genetic evidence for synaptogenetic activity of Nrxs in the mammalian CNS remained rather scarce. Triple knockout mice lacking all α-Nrxs display no gross synaptic defects at the ultrastructural level. Future analysis will have to investigate whether differences here might be explained by specific compensation mechanisms in mammals; for example, by β-Nrxs, or other parallel trans-synaptic communication modules. Genuine functional deficits in neurotransmitter release were also observed after the elimination of presynaptic Spn. Elimination of ligand binding to the PDZ domain rendered the protein completely nonfunctional, without affecting its synaptic targeting. Thus, the Spn functional defects are likely to be mediated via a lack of Nrx-1 binding. Notably, ample evidence connects Nrx-1 function with both the functional and structural maturation of Drosophila presynaptic AZs. This work now promotes the possibility that binding of Spn to Nrx-1 is important for establishing correct release probability, independent of absolute AZ scaffold size. It is noteworthy that Nrx-1 function was previously shown to be important for proper Ca2+ channel function and, as a result, properly evoked SV release. Thus, it will be interesting to investigate whether the specific functional contributions of Spn are mediated via deficits in the AZ organization of voltage-gated Ca2+ channels or Ca2+ sensors, such as synaptotagmin. Taken together, this study found an unexpected function for Spn in addition of AZs at Drosophila glutamatergic terminals, through the integration of signals from both the pre- and postsynaptic compartment. Given that the Spn/Nrx-1 interaction is found to be conserved from Drosophila to rodents, addressing similar roles of presynaptic Spn in mammalian brain physiology and pathophysiology might be informative (Muhammad, 2015).

Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist

The axonal shafts of neurons contain bundled microtubules, whereas extending growth cones contain unbundled microtubule filaments, suggesting that localized activation of microtubule-associated proteins (MAP) at the transition zone may bundle these filaments during axonal growth. Dephosphorylation is thought to lead to MAP activation, but specific molecular pathways have remained elusive. This study found that Spinophilin, a Protein-phosphatase 1 (PP1) targeting protein, is responsible for the dephosphorylation of the MAP Doublecortin (Dcx) Ser 297 selectively at the "wrist" of growing axons, leading to activation. Loss of activity at the 'wrist' is evident as an impaired microtubule cytoskeleton along the shaft. These findings suggest that spatially restricted adaptor-specific MAP reactivation through dephosphorylation is important in organization of the neuronal cytoskeleton (Bielas, 2007).

The 62E early-late puff of Drosophila contains D-spinophilin, an ecdysone-inducible PDZ-domain protein dynamically expressed during metamorphosis
At the onset of metamorphosis in Drosophila melanogaster, the steroid hormone 20-OH ecdysone induces a small number of early and early-late puffs in the polytene chromosomes of the third-instar larval salivary gland whose activity is required for regulating the activity of a larger set of late puffs. Most of the corresponding early and early-late genes have been found to encode transcription factors that regulate a much larger set of late genes. In contrast, this study describes the identification of an ecdysone-regulated gene in the 62E early-late puff, denoted D-spinophilin, that encodes a protein similar to the mammalian protein spinophilin/neurabin II. The D-spinophilin protein is predicted to contain a highly conserved PP1-binding domain and adjacent PDZ domain, as well as a coiled-coil domain and SAM domain, and belongs to a family of related proteins from diverse organisms. Transcription of D-spinophilin is correlated with 62E puff activity during the early stages of metamorphosis and is ecdysone-dependent, making this the first member of this gene family shown to be regulated by a steroid hormone. Examination of the dynamic patterns of D-spinophilin expression during the early stages of metamorphosis are consistent with a role in central nervous system metamorphosis as well as a more general role in other tissues. As D-spinophilin appears to be the only member of this gene family in Drosophila, its study provides an excellent opportunity to elucidate the role of an important adaptor protein in a genetic model organism (Keegan, 2001).


REFERENCES

Search PubMed for articles about Drosophila Spinophilin

Allen, P. B., Zachariou, V., Svenningsson, P., Lepore, A. C., Centonze, D., Costa, C., Rossi, S., Bender, G., Chen, G., Feng, J., Snyder, G. L., Bernardi, G., Nestler, E. J., Yan, Z., Calabresi, P. and Greengard, P. (2006). Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience 140: 897-911. PubMed ID: 16600521

Bielas, S. L., Serneo, F. F., Chechlacz, M., Deerinck, T. J., Perkins, G. A., Allen, P. B., Ellisman, M. H. and Gleeson, J. G. (2007). Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 129: 579-591. PubMed ID: 17482550

Chia, P. H., Patel, M. R. and Shen, K. (2012). NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins. Nat Neurosci 15: 234-242. PubMed ID: 22231427

Feng, J., Yan, Z., Ferreira, A., Tomizawa, K., Liauw, J. A., Zhuo, M., Allen, P. B., Ouimet, C. C. and Greengard, P. (2000). Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci U S A 97: 9287-9292. PubMed ID: 10922077

Keegan, J., Schmerer, M., Ring, B. and Garza, D. (2001). The 62E early-late puff of Drosophila contains D-spinophilin, an ecdysone-inducible PDZ-domain protein dynamically expressed during metamorphosis. Genet Res 77: 27-39. PubMed ID: 11279828

Muhammad, K., et al. (2015). Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function. Nat Commun 6: 8362. PubMed ID: 26471740.

Muly, E. C., Allen, P., Mazloom, M., Aranbayeva, Z., Greenfield, A. T. and Greengard, P. (2004a). Subcellular distribution of neurabin immunolabeling in primate prefrontal cortex: comparison with spinophilin. Cereb Cortex 14: 1398-1407. PubMed ID: 15217898

Muly, E. C., Smith, Y., Allen, P. and Greengard, P. (2004b). Subcellular distribution of spinophilin immunolabeling in primate prefrontal cortex: localization to and within dendritic spines. J Comp Neurol 469: 185-197. PubMed ID: 14694533

Sarrouilhe, D., di Tommaso, A., Metaye, T. and Ladeveze, V. (2006). Spinophilin: from partners to functions. Biochimie 88: 1099-1113. PubMed ID: 16737766

Terry-Lorenzo, R. T., Roadcap, D. W., Otsuka, T., Blanpied, T. A., Zamorano, P. L., Garner, C. C., Shenolikar, S. and Ehlers, M. D. (2005). Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation. Mol Biol Cell 16: 2349-2362. PubMed ID: 15743906


Biological Overview

date revised: 27 December 2015

Home page: The Interactive Fly © 2011 Thomas Brody, Ph.D.