serpent


REFERENCES

Abel, T., Michelson, A.M. and Maniatis, T. (1993). the Drosophila GATA family member that binds toAdhregulatory sequences is expressed in the developing fat body. Development 119(3): 623-633. PubMed ID:8187633

Adelman, C. A., Chattopadhyay, S. and Bieker, J. J. (2002). The BMP/BMPR/Smad pathway directs expression of the erythroid-specific EKLF and GATA1 transcription factors during embryoid body differentiation in serum-free media. Development 129: 539-549. PubMed ID: 11807044

Afouda, B. A., Ciau-Uitz, A. and Patient, R. (2005). GATA4, 5 and 6 mediate TGFbeta maintenance of endodermal gene expression in Xenopus embryos. Development 132(4): 763-74. PubMed ID: 15659482

Anderson, K. P., Crable, S. C. and Lingrel, J. B. (1998). Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Kruppel-like factor (EKLF) gene. J. Biol. Chem. 273(23): 14347-14354. PubMed ID:9603943

Anderson, M. K., et al. (2002), Definition of regulatory network elements for T cell development by perturbation analysis with PU.1 and GATA-3. Dev. Biol. 246: 103-121. PubMed ID:12027437

Azpiazu, N., et al. (1996). Segmentation and specification of theDrosophilamesoderm. Genes Dev. 10: 3183-94. PubMed ID:8985186

Benmimoun, B., Polesello, C., Waltzer, L., Haenlin, M. (2012). Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139(10): 1713-7. PubMed Citation:22510984

Bert, A. G., Johnson, B. V., Baxter, E. W. and Cockerill, P. N. (2007). A modular enhancer is differentially regulated by GATA and NFAT elements that direct different tissue-specific patterns of nucleosome positioning and inducible chromatin remodeling. Mol. Cell. Biol. 27(8): 2870-85. PubMed ID:17283044

Bertrand, V., et al. (2003). Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115: 615-627. PubMed ID: 14651852

Bielinska, M, and Wilson, D. B. (1997). Induction of yolk sac endoderm in GATA-4-deficient embryoid bodies by retinoic acid. Mech. Dev. 65(1-2): 43-54. PubMed ID:9256344

Blobel, G. A., et al. (1998). CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl. Acad. Sci. 95: 2061-2066. PubMed ID:9482838

Blokzijl, A., ten Dijke, P. and Ibanez, C. F. (2002). Physical and functional interaction between GATA-3 and Smad3 allows TGF-ß regulation of GATA target genes. Curr. Biol. 12: 35-45. PubMed ID: 11790301

Bose, F., et al. (2006). Functional interaction of CP2 with GATA-1 in the regulation of erythroid promoters. Mol. Cell. Biol. 26(10): 3942-54. PubMed ID:16648487

Bossard, P. and Zaret, K. S. (1998). GATA transcription factors as potentiators of gut endoderm differentiation. Development 125(24): 4909-17. PubMed ID:9811575

Boyes, J., et al. (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396(6711): 594-8. PubMed ID:9859997

Briegel, K., et al. (1996). Regulation and function of transcription factor GATA-1 during red blood cell differentiation Development 122: 3839-3850. PubMed ID:9012505

Brodu, V., et al. (2001). A UAS site substitution approach to the in vivo dissection of promoters: interplay between the GATAb activator and the AEF-1 repressor at a Drosophila ecdysone response unit. Development 128: 2593-2602. PubMed ID: 11493575

Broitman-Maduro, G., Maduro, M. F. and Rothman, J. H. (2005). The noncanonical binding site of the MED-1 GATA factor defines differentially regulated target genes in the C. elegans mesendoderm. Dev. Cell 8(3): 427-33. PubMed ID: 15737937

Budovskaya, Y. V., et al. (2008). An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans. Cell 134: 291-303. PubMed ID:18662544

Cai, H., Katoh-Kurasawa, M., Muramoto, T., Santhanam, B., Long, Y., Li, L., Ueda, M., Iglesias, P. A., Shaulsky, G. and Devreotes, P. N. (2014). Nucleocytoplasmic shuttling of a GATA transcription factor functions as a development timer. Science 343: 1249531. PubMed ID: 24653039

Calvo, D. et al. (2001). A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis. EMBO J. 20: 7197-7208. PubMed ID: 11742996

Campbell, K. and Casanova, J. (2015). A role for E-cadherin in ensuring cohesive migration of a heterogeneous population of non-epithelial cells. Nat Commun 6: 7998. PubMed ID: 26272476

Campbell, K., Lebreton, G., Franch-Marro, X. and Casanova, J. (2018). Differential roles of the Drosophila EMT-inducing transcription factors Snail and Serpent in driving primary tumour growth. PLoS Genet 14(2): e1007167. PubMed ID: 29420531

Cirillo, L. A., et al. (2002). Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Molec. Cell 9: 279-289. PubMed ID: 11864602

Connelly, J. J., et al. (2006). GATA2 is associated with familial early-onset coronary artery disease. PLoS Genet. 2(8): e139. PubMed ID:16934006

Craven, S. E., et al. (2004). Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131: 1165-1173. PubMed ID:14973276

Crispino, J. D., et al. (2001). Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 15: 839-844. PubMed ID: 11297508

Crozatier M., et al. (2004). Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 2: E196. PubMed ID:15314643

Dai, Y. S., et al. (2002). The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J. Biol. Chem. 277(27): 24390-8. PubMed ID: 11994297

Dasen, J. S., et al. (1999). Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 97: 587-598. PubMed ID:10367888

Davis, D. L., Wessels, A. and Burch, J. B. E. (2000). An Nkx-dependent enhancer regulates cGATA-6 gene expression during early stages of heart development. Dev. Biol. 217: 310-322. PubMed ID:10625556

Davis, D. L., et al. (2001). A GATA-6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech. Dev. 108: 105-119. PubMed ID: 11578865

de Velasco, B., Mandal, L., Mkrtchyan, M. and Hartenstein, V. (2006). Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. Dev. Genes Evol. 216(1): 39-51. PubMed ID: 16249873

Dodou, E., et al. (2004).Mef2cis a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131: 3931-3942. PubMed ID: 15253934

Drechsler, M., Schmidt, A. C., Meyer, H. and Paululat, A. (2013). The conserved ADAMTS-like protein lonely heart mediates matrix formation and cardiac tissue integrity. PLoS Genet 9: e1003616. PubMed ID: 23874219

Durocher, D., et al. (1997). The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16(18): 5687-5696. PubMed ID:9312027

Durocher, D. and Nemer, M. (1998). Combinatorial interactions regulating cardiac transcription. Dev. Genet. 22(3): 250-262. PubMed ID:9621432

Fossett, N., et al. (2001). The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc. Natl. Acad. Sci. 98: 7342-7347. PubMed ID: 11404479

Fox, A. H., et al. (1998). Key residues characteristic of GATA N-fingers are recognized by FOG. J. Biol. Chem. 273(50): 33595-603. PubMed ID:9837943

Fox, A. H., et al. (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18(10): 2812-2822. PubMed ID:10329627

Frank, L. H. and Rushlow, C. (1996). A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development 122: 1343-1352. PubMed ID:8625823

Fujikura, J., et al. (2002). Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16: 784-789. PubMed ID: 11937486

Fukushige, T., Hawkins, M. G. and McGhee J. D. (1998). The GATA-factorelt-2is essential for formation of theCaenorhabditis elegansintestine. Dev. Biol. 198(2): 286-302. PubMed ID:9659934

Fukushige, T., et al. (2003). The evolutionary duplication and probable demise of an endodermal GATA Factor in Caenorhabditis elegans. Genetics 165: 575-588. PubMed ID: 14573471

Gao, X, et al. (1998). Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol. Cell. Biol. 18(5): 2901-2911. PubMed ID:9566909

Garg, V., et al. (2003). GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424(6947): 443-7. PubMed ID: 12845333

Garriga-Canut, M. and Orkin, S. H. (2004). Transforming acidic Coiled-Coil Protein 3 (TACC-3) controls Friend-of-GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J. Biol. Chem. 279: 23597-23605. PubMed ID:15037632

Ghosh, S., Singh, A., Mandal, S. and Mandal, L. (2015). Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response. Dev Cell 33(4):478-88. PubMed ID: 25959225

Gilleard, J. S. and McGhee, J. D. (2001). Activation of hypodermal differentiation in the Caenorhabditis elegans embryo by GATA transcription factors ELT-1 and ELT-3. Mol. Cell. Bio. 21: 2533-2544. PubMed ID: 11259601

Gobert, V., et al. (2010). A genome-wide RNA interference screen identifies a differential role of the mediator CDK8 module subunits for GATA/ RUNX-activated transcription in Drosophila. Mol. Cell Biol. 30(11): 2837-48. PubMed ID:20368357

Gordon, D. F., et al. (1997). Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin beta-subunit promoter. J. Biol. Chem. 272(39): 24339-24347. PubMed ID:9305891

Gottgens, B., et al. (2002). Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J. 21(12): 3039-50. PubMed ID: 12065417

Gove, C., et al. (1997). Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO J. 16: 355-368 . PubMed ID:9029155

Green, Y. S., Kwon, S., Mimoto, M. S., Xie, Y. and Christian, J. L. (2016). Tril targets Smad7 for degradation to allow hematopoietic specification in Xenopus embryos. Development 143(21): 4016-4026. PubMed ID: 27633996

Grepin, C., Nemer, G., and Nemer, M. (1997). Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124 (12): 2387-2395. PubMed ID:9199365

Groschel, S., et al. (2014). A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157: 369-381. PubMed ID:24703711

Gutiérrez, L., et al. (2004). Homotypic signalling regulates Gata1 activity in the erythroblastic island. Development 131: 3183-3193. PubMed ID: 15175249

Han, Z. and Olson, E. N. (2005). Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis. Development 132: 3525-3536. PubMed ID: 15975941

Haugas, M., Tikker, L., Achim, K., Salminen, M. and Partanen, J. (2016). Gata2 and Gata3 regulate the differentiation of serotonergic and glutamatergic neuron subtypes of the dorsal raphe. Development [Epub ahead of print]. PubMed ID: 27789623

Hayes, S. A., Miller, J. M. and Hoshizaki, D. K. (2001). serpent, a GATA-like transcription factor gene, induces fat-cell development inDrosophila melanogaster. Development 128: 1193-1200. PubMed ID: 11245585

He, A., Kong, S. W., Ma, Q., and Pu, W. T. (2011). Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc. Natl. Acad. Sci. 108: 5632-5637. PubMed ID:21415370

He, C. Z. and Burch, J. B. E. (1997). The chicken GATA-6 locus contains multiple control regions that confer distinct patterns of heart region-specific expression in transgenic mouse embryos. J. Biol. Chem. 272(45): 28550-28556. PubMed ID:9353318

Heyworth, C., et al. (2002). Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J. 21: 3770-3781. PubMed ID: 12110589

Hiroi, Y., et al. (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat. Genet. 28(3): 276-80. PubMed ID: 11431700

Holtzinger, A. and Evans, T. (2005). Gata4 regulates the formation of multiple organs. Development 132(17): 4005-14. PubMed ID: 16079152

Holz, A., et al. (2003). The two origins of hemocytes in Drosophila. Development 130: 4955-4962. PubMed ID: 12930778

Huang, D. Y., Kuo, Y. Y., Lai, J. S., Suzuki, Y., Sugano, S. and Chang, Z. F. (2004). GATA-1 and NF-Y cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic Acids Res. 32(13): 3935-46. PubMed ID: 15280509

Huang, D. Y., Kuo, Y. Y. and Chang, Z. F. (2005). GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells. Nucleic Acids Res. 33: 5331-5342. PubMed ID:16177182

Hung, H. L., et al. (1999). CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol. Cell. Biol. 19(5): 3496-505 . PubMed ID:10207073

Jacobsen, C. M., et al. (2002). Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev. Biol. 241(1): 34-46. PubMed ID: 11784093

Jiang, Y. and Evans, T. (1996). TheXenopusGATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev. Biol. 174: 258-270. PubMed ID:8631498

Jiang, Y., et al. (1998). Common role for each of the cGATA-4/5/6 genes in the regulation of cardiac morphogenesis. Dev. Genet. 22(3): 263-277. PubMed ID:9621433

Jiang, Y., Drysdale, T. A. and Evans, T. (1999). A role for GATA-4/5/6 in the regulation of Nkx2.5 expression with implications for patterning of the precardiac field. Dev. Biol. 216(1): 57-71. PubMed ID:10588863

Joshi, K., Lee, S., Lee, B., Lee, J. W. and Lee, S. K. (2009). LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 61(6): 839-51. PubMed ID:19323994

Jung, S. H., Evans, C. J., Uemura, C. and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132(11): 2521-33. PubMed ID: 15857916

Kadalayil, L., Petersen, U. M. and Engström, Y. (1997). Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res 25 (6): 1233-1239. PubMed ID:9092634

Kadam, S. and Emerson, B. M. (2003). Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11: 377-389. PubMed ID: 12620226

Kala, K., et al. (2009).Gata2is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136: 253-262. PubMed ID:19088086

Karunaratne, A., et al. (2002). GATA proteins identify a novel ventral interneuron subclass in the developing chick spinal cord. Dev. Bio. 249: 30-43. PubMed ID: 12217316

Kaufman, C. K., et al. (2003). GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17: 2108-2122. PubMed ID: 12923059

Keijzer, R., et al. (2001). The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 128: 503-511. PubMed ID: 11171334

Khandekark, M., et al. (2007). A Gata2 intronic enhancer confers its pan-endothelia-specific regulation. Development 134: 1703-1712. PubMed ID:17395646

Kitajima, K., et al. (2002). GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. EMBO J. 21: 3060-3069. PubMed ID: 12065419

Klusmann, J. H., et al. (2010). Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev. 24(15): 1659-72. PubMed ID:20679399

Ko, L. J., et al. (1991). Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 11: 2778-84. PubMed ID:2017177

Kobayashi, M., Nishikawa, K. and Yamamoto, M. (2001). Hematopoietic regulatory domain of gata1 gene is positively regulated by GATA1 protein in zebrafish embryos. Development 128: 2341-2350. PubMed ID:11493553

Kobayashi-Osaki, M., et al. (2005). GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Mol. Cell. Biol. 25(16): 7005-20. PubMed ID: 16055713

Koh1, K., et al. (2002). Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors -- apparent direct targets of the LIN-39 Hox protein. Development 129: 5171-5180. PubMed ID: 12399309

Kornhauser, J. M., et al. (1994). Temporal and spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Brain Res. Mol. Brain Res. 23(1-2): 100-110. PubMed ID:8028475

Kostetskii, I., et al. (1999). Retinoid signaling required for normal heart development regulates GATA-4 in a pathway distinct from cardiomyocyte differentiation. Dev. Biol. 206(2): 206-18. PubMed ID:9986733

Koutsourakis, M., et al. (1999). The transcription factor GATA6 is essential for early extraembryonic development. Development 126(4): 723-732. PubMed ID:10383242

Koutsourakis, M., et al. (2001). Branching and differentiation defects in pulmonary epithelium with elevated Gata6 expression. Mech. Dev. 105: 105-114. PubMed ID: 11429286

Krzemien J., et al. (2007). Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446: 325-328. PubMed ID:17361184

Kuo, C. T., et al. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation Genes Dev. 11: 1048-1960. PubMed ID:9136932

Kurek, D., et al. (2007). Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development 134: 261-272. PubMed ID:17151017

Kuuluvainen, E., Hakala, H., Havula, E., Sahal Estime, M., Ramet, M., Hietakangas, V. and Makela, T. P. (2014). Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila. J Biol Chem 289: 16252-16261. PubMed ID: 24778181

Latinkic, B. V., Kotecha, S. and Mohun, T. J. (2003). Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants. Development 130: 3865-3876. PubMed ID: 12835401

Laverriere, A. C., et al. (1994). GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269: 23177-23184. PubMed ID:8083222

Lawoko-Kerali, G., et al. (2004). GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mech. Dev. 121: 287-299. PubMed ID: 15003631

Lebestky, T., et al. (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288: 146-149. PubMed ID:10753120

Lécuyer, E., et al. (2002). The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 100: 2430-2440. PubMed ID:12239153

Lee, K.-H., Evans, S., Ruan, T. Y. and Lassar, A. B. (2004). SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chickNkx2.5enhancer. Development 131: 4709-4723. PubMed ID: 15329343

Lee, S., et al. (2008). A regulatory network to segregate the identity of neuronal subtypes. Dev. Cell 14: 877-889. PubMed ID:18539116

Lee, Y., et al. (1998). The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol. Cell. Biol. 18(6): 3120-3129. PubMed ID:9584153

Li, L., et al. (2004). Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 131: 5277-5286. PubMed ID: 15456727

Li, Q., et al. (1997). Binary transgenic mouse model for studying the trans control of globin gene switching: evidence that GATA-1 is an in vivo repressor of human epsilon gene expression. Proc. Natl. Acad. Sci. 94: 2444-48. PubMed ID:9122214

Lien, C. L., et al. (1999). Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 126(1): 75-84. PubMed ID:9834187

Lieuw, K. H., et al. (1997). Temporal and spatial control of murine GATA-3 transcription by promoter-proximal regulatory elements. Dev. Biol. 188(1): 1-16. PubMed ID:9245507

Liew, C. K., et al. (2004). Zinc fingers as protein recognition motifs: structural basis for the GATA-1/friend of GATA interaction. Proc. Natl. Acad. Sci. 102(3): 583-8. PubMed ID: 15644435

Lohmann, F. and Bieker, J. J. (2008). Activation of Eklf expression during hematopoiesis by Gata2 and Smad5 prior to erythroid commitment. Development 135: 2071-2082. PubMed ID:18448565

Long, Q., et al. (1997). GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124(20): 4105-4111. PubMed ID:9374406

Lossky, M. and Wensink, P. C. (1995). Regulation of Drosophila yolk protein genes by an ovary-specific GATA factor. Mol. Cell. Biol. 15: 6943-6952. PubMed ID:8524261

Lu, J.-r., et al. (1999). FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol. Cell. Biol. 19: 4495-4502. PubMed ID:10330188

Lugus, J. J., et al. (2007). GATA2 functions at multiple steps in hemangioblast development and differentiation. Development 134: 393-405. PubMed ID:17166922

Maduro, M. F., et al. (2001). Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Molec. Cell 7: 475-485. PubMed ID:11463373

Maeda, T., et al. (2009). LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev. Cell 17(4): 527-40. PubMed ID:19853566

Manaia, A., et al. (2000). Lmo2 and GATA-3 associated expression in intraembryonic hemogenic sites. Development 127(3): 643-653. PubMed ID:10631184

Mandal, L., Banerjee, U. and Hartenstein, V. (2004). Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat. Genet. 36: 1019-1023. PubMed ID: 15286786

Mandal L., et al. (2007). A Hedgehog- and Antennapedia-dependent niche maintains Drosophila hematopoietic precursors. Nature 446: 320-324. PubMed ID:17361183

Manuylov, N. L., et al. (2009). Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 135: 3731-3743. PubMed ID:18927154

McFadden, D. G., et al. (2000). A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development 127: 5331-5341. PubMed ID:11076755

Mead, P. E., et al. (2001). Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 128: 2301-2308. PubMed ID:11493549

Meireles-Filho, A. C., Bardet, A. F., Yanez-Cuna, J. O., Stampfel, G. and Stark, A. (2013). cis-regulatory requirements for tissue-specific programs of the circadian clock. Curr Biol 24(1): 1-10. PubMed ID:24332542

Merika, M. and Orkin, S. H. (1995). Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol. Cell. Biol. 15(5): 2437-2447. PubMed ID:7739528

Molkentin, J. D., et al. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11: 1061-72. PubMed ID:9136933

Molkentin, J. D., et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2): 215-228. PubMed ID:9568714

Molkentin, J. D., et al. (2000). Direct activation of a GATA6 cardiac enhancer by Nkx2.5: Evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev. Biol. 217: 301-309 . PubMed ID:10625555

Moore, L., et al. (1998). Gonadal mesoderm and fat body initially follow a common developmental path in Drosophila. Development 125(5): 837-844. PubMed ID:9449666

Morin, S., et al. (2000). GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19: 2046-2055. PubMed ID:10790371

Morin, S., et al. (2001). Serum response factor-GATA ternary complex required for nuclear signaling by a G-Protein-coupled receptor. Mol. Cell. Bio. 21: 1036-1044. PubMed ID: 11158291

Morrisey, E. E., et al. (1997a). GATA-4 activates transcription via two novel domains that are conserved within the GATA-4/5/6 subfamily. J Biol Chem 272 (13): 8515-8524. PubMed ID:9079680

Morrisey, E. E., et al. (1997b). GATA-5: A transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev. Biol. 183: 21-36. PubMed ID:9119112

Morrisey, E. E., et al. (1998). GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 12(22): 3579-90. PubMed ID:9832509

Munshi, N. V., et al. (2009). Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development. 136(15): 2665-74. PubMed ID:19592579

Nardelli, J., et al. (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol. 210(2): 305-21. PubMed ID:10357893

Narita, N., Bielinska, M. and Wilson, D. B. (1997a). Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. Dev. Biol. 189(2): 270-274. PubMed ID:9299119

Narita, N,, Bielinska, M. and Wilson, D. B. (1997b). Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 124(19): 3755-3764. PubMed ID:9367431

Neave, B., et al. (1995). Expression of zebrafish GATA 3 (gta3) during gastrulation and neurulation suggests a role in the specification of cell fate. Mech. Dev. 51(2-3): 169-182. PubMed ID:7547465

Nemer, G. and Nemer, M. (2002). Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells Development 129: 4045-4055. PubMed ID: 12163407

Nemer, G. and Nemer, M. (2003). Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Dev. Bio. 254: 131-148. PubMed ID: 12606287

Orford, R. L., et al. (1998). The maternal CCAAT box transcription factor which controls GATA-2 expression is novel and developmentally regulated and contains a double-stranded-RNA-binding subunit. Mol. Cell. Biol. 18(9): 5557-66. PubMed ID:9710639

Okumura, T., Matsumoto, A., Tanimura, T. and Murakami, R. (2005). An endoderm-specific GATA factor gene,dGATAe, is required for the terminal differentiation of the Drosophilaendoderm. Dev. Biol. 278(2): 576-86. PubMed ID: 15680371

Osada, H., et al. (1995). Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc Natl Acad Sci 92: 9585-9589. PubMed ID:7568177

Pandolfi, P. P., et al. (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 11(1): 40-44. PubMed ID:7550312

Pata, I. et al. (1999). The transcription factor GATA3 is a downstream effector ofHoxb1 specification in rhombomere 4. Development 126: 5523-5531. PubMed ID:10556076

Pedone, P.V., et al. (1997). The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequence-specific DNA binding domains. EMBO J 16 (10): 2874-2882. PubMed ID:9184231

Penberthy, W. T., et al. (2004). Pur alpha and Sp8 as opposing regulators of neuralgata2expression. Dev. Biol. 275: 225-234. PubMed ID: 15464585

Pevny, L., et al. (1991). Erythroid differentiation in chimeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349: 257-60. PubMed ID:1987478

Pevny, L., et al. (1995). Development of hematopoietic cells lacking transcription factor GATA-1. Development 121: 163-172. PubMed ID:7867497

Postigo, A. A. and Dean, D. C. (1999). Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol. Cell. Biol. 19(12): 7961-71. PubMed ID: 10567522

Pu, W. T., Ishiwata, T., Juraszek, A. L., Ma, Q. and Izumo, S. (2004). GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev. Biol. 275(1): 235-44. PubMed ID: 15464586

Rehorn, K.-P., et al. (1996). A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 122: 4023-4031. PubMed ID:9012522

Reiter, J. F., Kikuchi, Y. and Stainier, D. Y. R. (2001). Multiple roles for Gata5 in zebrafish endoderm formation. Development 128: 125-135. PubMed ID: 11092818

Reiter, J. F., Verkade, H. and Stainier, D. Y. R. (2001). Bmp2b and Oep promote early myocardial differentiation through their regulation ofgata5. Dev. Bio. 234: 330-338. PubMed ID: 11397003

Reuter, R. (1994). The geneserpenthas homeotic properties and specifies endoderm versus ectoderm with theDrosophilagut. Development 120(5): 1123-1135. PubMed ID:7913013

Riddle, M. R., Weintraub, A., Nguyen, K. C., Hall, D. H. and Rothman, J. H. (2013). Transdifferentiation and remodeling of post-embryonic C. elegans cells by a single transcription factor. Development 140: 4844-4849. PubMed ID:24257624

Riechmann, V., et al. (1998). The genetic control of the distinction between fat body and gonadal mesoderm in Drosophila. Development 125(4): 713-723. PubMed ID:9435291

Robert-Moreno, A., Espinosa, L., de la Pompa, J. L. and Bigas, A. (2005). RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132(5): 1117-26. PubMed ID: 15689374

Rossi, J. M., et al. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 15: 1998-2009. PubMed ID: 11485993

Rothbacher, U., et al. (2007). A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 134: 4023-4032. PubMed ID:17965050

Sakamoto, N., et al. (2000). Role for cGATA-5 in transcriptional regulation of the embryonic chicken pepsinogen gene by epithelial-mesenchymal interactions in the developing chicken stomach. Dev. Biol. 223: 103-113. PubMed ID:10864464

Sam, S., Leise, W. and Hoshizaki, D. K. (1996). Theserpentgene is necessary for progression through the early stages of fat-body development. Mech. Dev. 60: 197-205. PubMed ID:9025072

Schlesinger, J., et al. (2011). The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. 7: e1001313. PubMed ID:21379568

Schrode, N., Saiz, N., Di Talia, S. and Hadjantonakis, A. K. (2014). GATA6 Levels Modulate Primitive Endoderm Cell Fate Choice and Timing in the Mouse Blastocyst. Dev Cell 29: 454-467. PubMed ID: 24835466

Searcy, R. D., et al. (1998). A GATA-dependentnkx-2.5regulatory element activates early cardiac gene expression in transgenic mice. Development 125(22): 4461-4470. PubMed ID:9778505

Sears, H. C., Kennedy, C. J. and Garrity, P. A. (2003). Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development 130: 3557-3565. PubMed ID: 12810602

Serbedzija, G. N., Chen, J.-N. and Fishman, M. C. (1998). Regulation in the heart field of zebrafish. Development 125(6): 1095-1101

Seshasayee, D., Gaines, P. and Wojchowski, D. M. (1998). GATA-1 dominantly activates a program of erythroid gene expression in factor-dependent myeloid FDCW2 cells. Mol. Cell. Biol. 18(6): 3278-3288. PubMed ID:9584168

Sepulveda, J. L., et al. (1998). GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol. Cell. Biol. 18(6): 3405-3415. PubMed ID:9584181

Shimizu, R., et al. (2001). In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 20: 5250-5260. PubMed ID: 11566888

Shoichet, S. A., et al. (2000). Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates, Proc. Natl. Acad. Sci. 97: 4076-4081. PubMed ID:10760276

Sinclair, A. M., et al. (1999). Distinct 5' SCL enhancers direct transcription to developing brain, spinal cord, and endothelium: neural expression is mediated by GATA factor binding sites. Dev. Biol. 209(1): 128-142. PubMed ID:10208748

Sinenko S. A., et al. (2009). Dual role of Wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16: 756-763. PubMed ID:19460351

Small, E. M. and Krieg, P. A. (2003). Transgenic analysis of theatrialnatriuretic factor (ANF)promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression ofANF. Dev. Biol. 261: 116-131. PubMed ID: 12941624

Sorrentino, R. P., Carton, Y. and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243: 65-80. PubMed ID:11846478

Sorrentino, R. P., Tokusumi, T. and Schulz, R. A. (2007). The Friend of GATA protein U-shaped functions as a hematopoietic tumor suppressor in Drosophila. Dev. Biol. 311(2): 311-23. PubMed ID:17936744

Soudais, C., et al. (1995). Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121: 3877-3888

Spagnoli, F. M. and Brivanlou, A. H. (2008). TheGata5target,TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. Development 135(3): 451-61. PubMed ID:18094028

Spahn, P., Huelsmann, S., Rehorn, K. P., Mischke, S., Mayer, M., Casali, A. and Reuter, R. (2013). Multiple regulatory safeguards confine the expression of the GATA factor serpent to the hemocyte primordium within the Drosophila mesoderm. Dev Biol 386(1): 272-9. PubMed ID: 24360907

Stennard, F. A., et al. (2003), Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev. Biol. 262: 206-224. PubMed ID: 14550786

Svensson, E. C., et al. (2000). A functionally conserved N-terminal domain of the Friend of GATA-2 (FOG-2) protein represses GATA4-dependent transcription. J. Biol. Chem. 275(27): 20762-20769. PubMed ID:10801815

Sykes, T. G., et al. (1998). Suppression of GATA factor activity causes axis duplication in Xenopus. Development 125(23): 4595-4605. PubMed ID:9806909

Tanabe, O., et al. (2007) The TR2 and TR4 orphan nuclear receptors repress Gata1 transcription. Genes Dev. 21(21): 2832-44. PubMed ID:17974920

Tevosian, S. G., et al. (2002). Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129: 4627-4634. PubMed ID: 12223418

Tian, Y., et al. (2010). Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev. Cell 18: 275-287. PubMed ID:20159597

Tingvall, T. O., Roos, E. and Engstrom, Y. (2001). The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. Proc. Natl. Acad. Sci. 98: 3884-3888. PubMed ID: 11274409

Tokusumi, Y., Tokusumi, T., Stoller-Conrad, J. and Schulz, R. A. (2010). Serpent, suppressor of hairless and U-shaped are crucial regulators ofhedgehogniche expression and prohemocyte maintenance during Drosophila larval hematopoiesis. Development 137(21): 3561-8. PubMed ID:20876645

Tokusumi, Y., Tokusumi, T., Shoue, D. A., Schulz, R. A. (2012). Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland. PLoS One 7(7):e41604. PubMed Citation:22911822

Tsai, F. Y., Browne, C. P. and Orkin, S. H. (1998). Knock-in mutation of transcription factor GATA-3 into the GATA-1 locus: partial rescue of GATA-1 loss of function in erythroid cells. Dev. Biol. 196(2): 218-227. PubMed ID:9576834

Tsang, A. P., et al. (1997). FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90(1): 109-119. PubMed ID:9230307

Tsarovina, K., et al. (2004). Essential role of Gata transcription factors in sympathetic neuron development. Development 131: 4775-4786. PubMed ID: 15329349

Ueki, N., Zhang, L. and Hayman, M. J. (2004). Ski negatively regulates erythroid differentiation through its interaction with GATA1. Mol. Cell. Biol. 24(23): 10118-25. PubMed ID:15542823

Van Esch, H., et al. (2000). GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406(6794): 419-22. PubMed ID:10935639

Viger, R. S., et al. (1998). Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Mullerian inhibiting substance promoter. Development 125(14): 2665-2675. PubMed ID:9636081

Vivancos, R. B. V. and Giangrande, A. (1997). glide/gcmis expressed and required in the scavenger cell lineage. Dev. Biol. 191(1): 118-130. PubMed ID:9356176

Wadman, I. A., et al. (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J (11):3145-3157. PubMed ID:9214632

Walmsley, M., Ciau-Uitz, A. and Patient, R. (2002). Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development 129: 5683-5695. PubMed ID: 12421708

Waltzer, L., et al. (2002). Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. EMBO J. 21: 5477-5486. PubMed ID: 12374748

Wang, G. F., et al. (1998). A positive GATA element and a negative vitamin D receptor-like element control atrial chamber-zpecific expression of a slow myosin heavy-chain gene during cardiac morphogenesis. Mol. Cell. Biol. 18(10): 6023-6034. PubMed ID:9742119

Wang, X., et al. (2002). Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J. 21: 5225-5234. PubMed ID: 12356738

Weber, H., et al. (2000). A role for GATA5 in Xenopus endoderm specification. Development 127: 4345-4360. PubMed ID:11003835

Weiss, M. J., Channing, Y. and Orkin, S. H. (1997). Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-thargeted cell line. Mol. Cell. Biol. 17: 1642-51 . PubMed ID:9032291

Weng, M. and Wieschaus, E. (2016). Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly. J Cell Biol 212(2): 219-229. PubMed ID: 26754645

Xu, R. H., et al. (1997). Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Mol. Cell. Biol. 17(1): 436-443. PubMed ID:8972224

Xu, R. H., et al. (1999). Opposite effects of FGF and BMP-4 on embryonic blood formation: Roles of PV.1 and GATA-2. Dev. Biol. 208(2): 352-361. PubMed ID:10191050

Xu, Z., et al. (2007). Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins. Genes Dev. 21: 942-955. PubMed ID:17437998

Yamagata, T., et al. (2000). Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs. EMBO J. 19: 4676-4687. PubMed ID:10970860

Yang, H., et al. (2002). GATA6 regulates differentiation of distal lung epithelium. Development 129: 2233-2246. PubMed ID: 11959831

Yang, L., Rastegar, S. and Strähle U. (2010). Regulatory interactions specifying Kolmer-Agduhr interneurons. Development 137(16): 2713-22. PubMed ID:20610488

Yang, W., Dierking, K., Rosenstiel, P. C. and Schulenburg, H. (2016). GATA transcription factor as a likely key regulator of the Caenorhabditis elegans innate immune response against gut pathogens Zoology (Jena) [Epub ahead of print]. PubMed ID: 27372411

Yuasa, H., et al. (2005). Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 24: 1976-1987. PubMed ID: 15889140

Zhang, D. H., et al. (1997). Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272(34): 21597-21603. PubMed ID:9261181

Zhang, Y., et al. (2007). GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo. Development 134: 189-198. PubMed ID:17164424

Zheng, W.-p. and Flavell, R. A. (1997). The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89: 587-596. PubMed ID:9160750

Zhou, Y., et al. (1998). Rescue of the embryonic lethal hematopoietic defect reveals a critical role for GATA-2 in urogenital development. EMBO J. 17(22): 6689-700. PubMed ID:9822612

Zhou, Y., Yamamoto, M. and Engel, J. D. (2000). GATA2 is required for the generation of V2 interneurons. Development 127: 3829-3838. PubMed ID:10934027

Zhu, J., et al. (1997). end-1encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev. 11(21): 2883-2896 . PubMed ID:9353257

Zhu, J., et al. (1998). Reprogramming of early embryonic blastomeres into endodermal progenitors by aCaenorhabditis elegansGATA factor. Genes Dev. 12(24): 3809-14. PubMed ID:9869634


serpent: Biological Overview |Evolutionary Homologs |Regulation |Developmental Biology |Effects of Mutation

date revised: 22 January 2017

Home page: The InteractiveFly © 1997 Thomas B. Brody, Ph.D.

The InteractiveFly resides on the
Society for Developmental Biology's Web server.