u-shaped


DEVELOPMENTAL BIOLOGY

Embryonic

The 4.7 kb transcript is detected with a peak of expression during early embryonic stages at 4-8 hours (Cubadda, 1997).

Larval

Expression of ush in the late third-instar wing imaginal disc appears to be restricted to specific domains. Staining is detected in territories corresponding to the future dorsal-most region of the thorax, as well as in part of the hinge region and the posterior region of the pleura. In the hinge region, ush expression is found in a domain comprising the sites of appearance of the anterior notal wing process and the proximal tegula, expanding up to the border where anterior and posterior notopleural bristles develop. In the dorsal part of the notum, staining covers the site of appearance of the scutellar bristles and extends to the border of the site at which the dorsocentral bristles form. Therefore, in the notum, the area of ush expression corresponds well with the region where ush is required for normal development (Cubadda, 1997).

Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function

Maintenance of hematopoietic progenitors ensures a continuous supply of blood cells during the lifespan of an organism. Thus, understanding the molecular basis for progenitor maintenance is a continued focus of investigation. A large pool of undifferentiated blood progenitors are maintained in the Drosophila hematopoietic organ, the larval lymph gland, by a complex network of signaling pathways that are mediated by niche-, progenitor-, or differentiated hemocyte-derived signals. This study examined the function of the Drosophila fibroblast growth factor receptor (FGFR), Heartless, a critical regulator of early lymph gland progenitor specification in the late embryo, during larval lymph gland hematopoiesis. Activation of Heartless signaling in hemocyte progenitors by its two ligands, Pyramus and Thisbe, is both required and sufficient to induce progenitor differentiation and formation of the plasmatocyte-rich lymph gland cortical zone. Two transcriptional regulators were identified that function downstream of Heartless signaling in lymph gland progenitors, the ETS protein, Pointed, and the Friend-of-GATA (FOG) protein, U-shaped, which are required for this Heartless-induced differentiation response. Furthermore, cross-talk of Heartless and target of rapamycin signaling in hemocyte progenitors is required for lamellocyte differentiation downstream of Thisbe-mediated Heartless activation. Finally, the Drosophila heparan sulfate proteoglycan, Trol, was identified as a critical negative regulator of Heartless ligand signaling in the lymph gland, demonstrating that sequestration of differentiation signals by the extracellular matrix is a unique mechanism employed in blood progenitor maintenance that is of potential relevance to many other stem cell niches (Dragojlovic-Munther, 2013).

Effects of Mutation or Deletion

Germband retraction in Drosophila, like most embryonic morphogenetic events in this organism and in higher eukaryotes, is not well understood. Several approaches have been taken to study the relationships between previously identified mutations (u-shaped, serpent, hindsight and tailup) that selectively cause germband retraction defects in homozygous embryos, and a more pleiotropically acting locus, DER/faint little ball, the Drosophila Epidermal growth factor receptor. The former four loci are elements of at least two parallel and partially redundant cellular pathways that affect germband retraction by acting in amnioserosal development or maintenance. An additional discrete and unique pathway, represented by DER/faint little ball, is likely to function in the germband itself. While the role of the amnioserosa during germband retraction appears to be permissive, the action of DER in the germband may be mediated by the cytoskeleton (Goldman-Levi, 1996).

The amnioserosa is an extraembryonic, epithelial tissue that covers the dorsal side of the Drosophila embryo. The initial development of the amnioserosa is controlled by the dorsoventral patterning genes. A group of genes, referred to as the U-shaped-group (ush-group), is required for maintenance of the amnioserosa tissue once it has differentiated. Using several molecular markers, amnioserosa development was developed in the ush-group mutants: u-shaped (ush), hindsight (hnt), serpent (srp) and tail-up (tup). The amnioserosa in these mutants is specified correctly and begins to differentiate as in wild type. However, following germ-band extension, there is a premature loss of the amnioserosa. This cell loss is a consequence of programmed cell death (apoptosis) in ush, hnt and srp, but not in tup. Thus, the ush-group genes are implicated in the maintainance of the amnioserosa's viability. In light of these mutants' unretracted phenotype, the amnioserosa could be involved in signal reception or the initiation of signal transduction with respect to the adjacent ectoderm (Frank, 1996).

A large number of mutant alleles of ush have been isolated; these include hypomorphic mutants that affect the pattern of bristles on the head and thorax. Viable transallelic combinations of ush display additional dorsocentral and scutellar bristles on the notum and a loss of postverticle bristles on the head. Loss of function mutants affect the development of the dorsal half of the notum only, clones in the lateral part of the notum differentiate normally. Clones extending into the scutellum fail to differentiate, generating large gaps in this region. Clones touching the dorsal midline are associated with a cleft in the thorax, whereas clones extending into the dorsocentral area are associated with absence or abnormal positioning of the dorsocentral bristles. Remarkably, in almost all cases of mosaicism in the dorsocentral area, the dorsocentral bristles formed by wild-type cells are also found to be displaced from their normal postions. Therefore, there seems to be a nonautonomous effect of mutant cells at positions where wild-type bristles would be expected to form (Cubadda, 1997).

U-shaped and heart development

Multitype zinc-finger proteins of the class Friend of GATA/U-shaped (Ush) are known to function as transcriptional regulators of gene expression through their modulation of GATA factor activity. To better understand intrinsic properties of these proteins, the expression and function of the ush gene during Drosophila embryogenesis has been investigated. ush is dynamically expressed in the embryo, including several cell types present within the mesoderm. The gene is active in the cardiogenic mesoderm, and a loss of function results in an overproduction of both cardial and pericardial cells, indicating a requirement for the gene in the formation of these distinct cardiac cell types. Conversely, ectopic expression of ush results in a decrease in the number of cardioblasts in the heart and the inhibition of a cardial cell enhancer normally regulated by the synergistic activity of the Pannier and Tinman cardiogenic factors. These findings suggest that, similar to its known function in thoracic bristle patterning, Ush functions in the control of heart cell specification through its modulation of Pannier transcriptional activity. ush is also required for mesodermal cell migration early in embryogenesis, where it shows a genetic interaction with the Heartless fibroblast growth factor receptor gene. Taken together, these results demonstrate a critical role for the Ush transcriptional regulator in several diverse processes of mesoderm differentiation and heart formation (Fossett, 2000).

The ush gene exhibits a dynamic pattern of expression during embryogenesis. Gene transcripts are first detected at high levels in the primordium of the amnioserosa at stage 5. Additional expression is observed in germ band extending embryos, in cells of the developing anterior and posterior midgut, and in hemocyte precursors present in the cephalic mesoderm. By stage 11, ush RNA is detected in the dorsal ectoderm and in precursor cells of the hemocytes and fat body. By late embryogenesis, ush expression is greatly diminished, but transcripts are still observed in the dorsal ectoderm during dorsal closure and cells within, or associated with, the central nervous system. To investigate the possible expression of ush in mesodermal cells underlying the dorsal ectoderm, cross sections of embryos at stage 11 were examined. ush RNA is detected in a changing pattern in this germ layer, initially throughout most of the mesoderm and then in subpopulations of cells, including precursors of the fat body, visceral mesoderm, and cardiogenic mesoderm. Therefore, ush is expressed in the dorsal mesoderm, where it could function in the early stages of heart formation (Fossett, 2000).

pnr mutant embryos show a loss of contractile cardial cells and an overproduction of certain nonmuscle pericardial cells in the heart-forming region. To identify a possible role for ush in these cardiogenic processes, alterations in cardiac cell production were sought in mutant embryos. The ush alleles used in this analysis were ush1 and ush2, believed to be hypomorphic mutations of the gene, and Df(2L)al, a chromosome deletion that represents a ush null mutation. The D-mef2 heart enhancer-lacZ fusion gene serves as a cardial cell marker, since it is detected in progenitors of these cells around stage 11 and thereafter in two, then four cardioblasts per hemisegment of the forming dorsal vessel. Embryos homozygous for either a point mutation or deletion of the gene show an increase in the number of cells expressing the reporter gene, as compared with the wild-type embryo. In ush1 embryos, a few hemisegments contain up to nine positive cells with an average of six cardial cells present in many clusters. In ush-deficiency embryos, a comparable increased density of cardial cells is found (Fossett, 2000).

Mef2 protein also marks cardioblasts; it is detected in the nuclei of all cardial, but not pericardial cells of the forming dorsal vessel. In wild-type embryos at stage 13, the germ band has retracted with cardioblasts migrating dorsally, separating from the dorsal somatic muscles. A lateral view at this stage shows a single row of cells that contains six stained nuclei per hemisegment. In contrast, ush mutant embryos possess supernumerary cardioblast nuclei. ush1 and ush2 embryos contain up to 12 nuclei per hemisegment with eight cells per cluster observed on average. Similar results have also been obtained with ush-deficiency embryos. Therefore, reducing or completely eliminating ush function leads to an increased production of cardial cells. Intriguingly, the ush heart phenotype uncovered by the analysis of these two markers directly contrasts the absence of cardial cells observed in pnr loss-of-function embryos (Fossett, 2000).

Production of pericardial cells was quantitated in ush mutant embryos, using Eve protein as a marker for a subset of these cells. In wild-type embryos at stage 12, there exist 11 Eve-positive clusters within the dorsal mesoderm, each containing about three cells. In contrast, the number of Eve-expressing pericardial cells increases in homozygous ush1 and ush2 embryos to an average of 5-6 per cluster. A similar increase in pericardial cell number is also observed in homozygous Df(2L)al embryos. Thus, ush gene activity is required to prevent the overproduction of this pericardial cell type, a function that has also been ascribed to the pnr gene (Fossett, 2000).

Because the loss of ush function resulted in a supernumerary cardial cell phenotype, the effect of expressing the gene throughout the mesoderm was monitored using the Gal4/UAS binary system. Mef2 was used to assess the status of cardial cells, with two contiguous rows of 52 cells present in the forming or mature dorsal vessel of wild-type embryos. In comparably staged embryos expressing ush throughout the mesoderm, a significant reduction in cardial cells is observed. The D-mef2 heart enhancer-lacZ fusion gene was used as a second marker for the cardial cells and also to assay the effect of ush expression on enhancer activity. In wild-type embryos at stage 16, the enhancer is active in eight cardial cells in most segments of the dorsal vessel. In contrast, beta-galactosidase activity is greatly diminished in the hearts of ush-expressing embryos, most likely a combination of the decrease in cardial cell number and the reduced activity of the D-mef2 cardiac enhancer. Thus, forced expression of ush has a potent negative effect on cardial cell formation and enhancer function (Fossett, 2000).

It has been shown that Pnr can function combinatorially with Tin in the regulation of the D-mef2 heart enhancer in Drosophila embryos. This synergistic activation was examined using a transient transfection assay in cultured Drosophila cells. The activation of a CAT reporter gene linked to the D-mef2 enhancer was monitored in cells transfected independently with Pnr, Tin, and Ush or with various combinations of the factors. The expression of Tin alone activated the enhancer about 2-fold above the basal level, whereas neither Pnr nor Ush affected enhancer activity. Coexpression of Pnr and Tin resulted in a synergistic activation of the enhancer to a level 5-6 times that of the basal activity, and this strong induction requires the binding of Tin to the Mef2 enhancer; a Tin DNA binding mutant, Tin (N-Q), failed to synergize with Pnr in the assay. In contrast, adding Ush as a third transfected factor significantly inhibits the synergistic activation of the enhancer by Pnr and Tin. This result demonstrates that Ush can antagonize the positive functional interaction of Pnr and Tin in the regulation of the cardial cell enhancer, which is consistent with the in vivo data (Fossett, 2000).

ush mutants contain an increased number of cardial cells. However, in about half of the embryos a disparity was noticed in the cardial cell populations, ranging from a high of 8-12 per hemisegment down to regions completely devoid of cells. This complex phenotype is observed with both ush hypomorphic and null alleles. This sporadic loss of cells from the dorsal-most part of the mesoderm is reminiscent of a htl mutant phenotype, where the absence of the encoded fibroblast growth factor receptor homolog results in an incomplete dorsal migration of mesodermal cells. In this event, cells fail to receive the ectodermal signal needed for their further commitment, resulting in a loss of dorsal mesodermal derivatives, including cardioblasts (Fossett, 2000).

To determine whether the variable absence of cardial cells in ush embryos is because of a cell migration defect, wild-type and mutant embryos were stained for Mef2 protein present in the invaginated population of mesodermal cells. In cross sections of normal embryos at stage 10, a uniform layer is observed where the dorsal-most mesodermal cells have migrated to a position adjacent to the dorsal-most ectodermal cells. In contrast, both htl and ush homozygous embryos display an irregular layer where mesodermal cells remain clustered and fail to undergo their complete dorsal migration. This result suggests ush function is required for the directional migration of the mesoderm. To investigate a potential genetic interaction of htl and ush in this process, embryos were examined that were heterozygous for mutations in each of the genes. These embryos also present a strong mesodermal migration phenotype, suggesting the two genes function in a common genetic pathway that controls this aspect of mesoderm differentiation. As was observed with homozygous ush embryos, slightly less than half of the transheterozygous embryos show a loss of cells from the dorsal mesoderm (Fossett, 2000).

It is thus thought that pnr has a dual requirement in the cardiogenic mesoderm because it is needed for the formation of cardial cells although simultaneously limiting the production of Eve-expressing pericardial cells. Based on these dissimilar phenotypes, it is postulated that Pnr might work with different combinations of factors to promote or repress the formation of cells within the distinct lineages. Recent studies have shown that Pnr and Tin act synergistically to induce cardial cells and activate gene expression, and the loss of function of either of these genes results in an absence of cardial cells. Therefore, the two work together in cardial cell specification (Fossett, 2000).

In contrast, Ush is a factor that normally suppresses cardial cell production. ush homozygous and hemizygous embryos show an increase in cardial cell number: the latter finding suggests Ush control of this cell population is dose-dependent, as is the case for Ush regulation of Pnr during sensory bristle development. Furthermore, forced expression of Ush decreases cardial cell production and D-mef2 heart enhancer activity, whereas ectopic expression of Pnr produces extra cardial cells and expands the domain of enhancer activity. Thus, Ush displays phenotypes that are in direct opposition to those of Pnr, suggesting that it can function as an antagonist of Pnr's cardiogenic activity. This conclusion is supported by the ability of Ush to inhibit the synergy of Pnr and Tin in the activation of the D-mef2 heart enhancer in cell transfection studies. As for the second cardiac phenotype, both pnr and ush are required to limit the number of Eve-expressing pericardial cells, consistent with a model in which Ush and Pnr function as corepressors in the control of these cells. To summarize, these genetic studies predict that, in the wild-type embryo, pnr is expressed and functions independent of ush in precursors of the cardioblast lineage. However, in neighboring cells that include the Eve lineage precursors, the expression and function of the two most likely overlaps. Future expression analyses of the two regulatory proteins at the resolution of single mesodermal cells will be required to elaborate on this genetic model in molecular terms (Fossett, 2000).

Friend of GATA (FOG) proteins regulate GATA factor-activated gene transcription. During vertebrate hematopoiesis, FOG and GATA proteins cooperate to promote erythrocyte and megakaryocyte differentiation. The Drosophila FOG homolog U-shaped (Ush) is expressed similarly in the blood cell anlage during embryogenesis. During hematopoiesis, the acute myeloid leukemia 1 homolog Lozenge and Glial cells missing are required for the production of crystal cells and plasmatocytes, respectively. However, additional factors have been predicted to control crystal cell proliferation. Ush is expressed in hemocyte precursors and plasmatocytes throughout embryogenesis and larval development, and the GATA factor Serpent is essential for Ush embryonic expression. Furthermore, loss of ush function results in an overproduction of crystal cells, whereas forced expression of Ush reduces this cell population. Murine FOG-1 and FOG-2 also can repress crystal cell production, but a mutant version of FOG-2 lacking a conserved motif that binds the corepressor C-terminal binding protein fails to affect the cell lineage. The GATA factor Pannier (Pnr) is required for eye and heart development in Drosophila. When Ush, FOG-1, FOG-2, or mutant FOG-2 is coexpressed with Pnr during these developmental processes, severe eye and heart phenotypes result, consistent with a conserved negative regulation of Pnr function. These results indicate that the fly and mouse FOG proteins function similarly in three distinct cellular contexts in Drosophila, but may use different mechanisms to regulate genetic events in blood vs. cardial or eye cell lineages (Fossett, 2001).

Using an antibody directed against Ush synthetic peptides, Ush protein was detected in an expression pattern similar to that of the gene transcript. Around embryonic stage 8, both ush RNA and protein can be detected in blood cell precursors. By stage 10, Ush-positive hemocyte precursors have spread throughout the lateral and ventral head mesoderm. As embryogenesis progresses, Ush is detected in stage 13 plasmatocytes migrating throughout the head mesoderm and down the ventral midline. During the late stages of embryogenesis, Ush continues to be expressed in plasmatocytes circulating throughout the embryonic hemolymph (Fossett, 2001).

lz expression in crystal cells is detected first during stage 10 and is maintained in this lineage until the late stages of embryogenesis. Fluorescent antibody staining and confocal microscopy were used to determine whether Ush and lz are coexpressed in the crystal cell lineage. To detect lz expression in hemocyte precursors and crystal cells, the expression of a UASlacZ reporter gene driven by lzGal4 (lzlacZ) was monitored. This reporter is active in hemocyte precursors as early as stage 10 and is expressed in the crystal cell lineage throughout embryogenesis. During embryonic stage 10, a number of hemocyte precursors express both Ush and lz. Later, during stage 13, the number of cells that expressed both lz and Ush decreases. Finally, during the late stages of embryogenesis, Ush is not detected in crystal cell lineage, evidenced by its failure to colocalize with the lzlacZ crystal cell marker. These results are consistent with a role for ush as a repressor of crystal cell production and suggest that ush expression is down-regulated in hemocyte precursors during crystal cell lineage commitment (Fossett, 2001).

During larval development, hematopoiesis takes place in the larval lymph glands, which flank the dorsal vessel. Plasmatocytes are specified and develop in the primary and secondary lobes of the gland, whereas crystal cells develop exclusively in the primary lobe. Ush is detected in most cells of primary and secondary lobes, consistent with expression in the plasmatocyte lineage. The protein is expressed in a differential pattern in the cells of the lymph glands, perhaps indicative of down-regulation during hemocyte precursor commitment. This may be analogous to the down-regulation of murine FOG-1 that is required for eosinophil and myeloid lineage differentiation (Fossett, 2001).

Srp function is required for hemocyte development and for differentiation of plasmatocytes and crystal cells. Furthermore, studies using amorphic alleles of srp indicate that it is required for hemocyte precursor specification. Srp is expressed first in the hemocyte precursors during embryonic stage 5, and, similar to Ush, its expression is maintained in plasmatocytes throughout embryogenesis. To determine whether an epistatic relationship exists between srp and ush, Ush expression was assayed in srp mutant embryos and Srp expression in ush mutant embryos. The hypomorphic allele srp3, which results in the production of hemocyte precursors, even with the reduction of Srp function, was used. In srp embryos, Ush is not detected in hemocyte precursors, plasmatocytes, or midgut, unlike the wild-type expression pattern. In contrast, Srp is observed in hemocyte precursors and plasmatocytes in both wild-type and ush mutant embryos. This result suggests ush resides downstream of srp in the hematopoiesis hierarchy and ush expression requires Srp function. Furthermore, ush is not required for the specification of hemocyte precursors or plasmatocytes, because these Srp-positive cells are detected in ush mutant embryos. Finally, wild-type levels of ush are present in the dorsal ectoderm of srp mutant embryos, indicating that dynamic ush expression is under the control of multiple regulators during embryogenesis (Fossett, 2001).

Previous studies have shown that ush functions to prevent the overproduction of sensory bristles, cardial cells, and pericardial cells. These observations, together with the findings that ush appears to be down-regulated during crystal cell lineage commitment, have suggested that Ush may act to limit crystal cell production. To test this hypothesis, assays were carried out for increased numbers of crystal cells in ush mutant embryos. Crystal cells are localized in a bilateral cluster of cells within the head mesoderm and require lz expression from embryonic stage 10 through 14 for their development. The lzlacZ genotype served as a crystal cell marker. Expression of lzlacZ was assayed in stage 13 embryos because during this stage the germ-band retraction phenotype can be used to distinguish ush mutants from wild-type embryos. Homozygous ush embryos show an increase in the number of lzlacZ-expressing cells compared with the wild-type control. These results were confirmed by using embryos harboring the Bc mutation, which renders crystal cells visible in late-stage homozygous embryos. Crystal cell production in ush Bc embryos was compared with the Bc parental strain, which has the wild-type ush allele. Again, homozygous ush Bc embryos have an increase in the number of crystal cells compared with the Bc embryos from the parental strain. Because the number of crystal cells in wild-type embryo populations can vary more than 2-fold, 20 wild-type and 20 ush embryos were sampled and a 30% overall increase in the number of crystal cells was seen by using either the lzlacZ or Bc marker. These results indicate that Ush functions to repress crystal cell production during hematopoiesis (Fossett, 2001).

To demonstrate further that Ush represses crystal cell production, Ush was expressed in crystal cells by using the Gal4/UAS binary system. The lzGal4 driver was used to express UASUsh in crystal cells, and their production was monitored by using the lzlacZ marker. Embryos with forced expression of Ush in crystal cells have a significant reduction in the number of these cells. Compared with similarly staged wild-type controls, UASUsh stage 13 and 16 embryos had a 30% and 85% reduction in number of crystal cells, respectively. A sample of 40 stage 13-16 UASUsh embryos averaged a 30% reduction in the number of crystal cells compared with wild-type controls. The phenotype of individual embryos within this population ranged from being completely devoid of crystal cells to wild-type cell numbers. These results indicate that down-regulation of ush during crystal cell lineage commitment is required for development of these cells. Together with the observed increase in crystal cell number in ush loss-of-function assays, these findings suggest that Ush functions during hematopoiesis to limit the number of hemocyte precursors that enter the crystal cell lineage (Fossett, 2001).

Recent studies have indicated that FOG proteins may function to regulate the commitment of several hematopoietic lineages. Ectopic expression of FOG proteins mFOG-1, mFOG-2, and xFOG (Xenopus FOG) early in Xenopus development represses red blood cell formation, possibly by down-regulating Gata-1 expression. These data suggest that FOG proteins may act to limit the differentiation of erythrocytes to prevent depletion of pluripotent stem cells. Furthermore, by using an in vitro avian hematopoietic differentiation system, it has been shown that FOG-1 represses eosinophil-specific gene expression and that forced expression of FOG-1 in eosinophils produces a multipotent precursor phenotype. Thus, down-regulation of FOG-1 in multipotent hematopoietic precursors is an essential step in eosinophil differentiation. In addition to findings that misexpressed Ush repressed crystal cell production, FOG-1 and FOG-2 also repress crystal cell number, indicating that the mechanism by which these proteins limit crystal cell number may be conserved. Taken together, studies using the Drosophila and vertebrate systems suggest that FOG proteins function to preserve the multipotent hemocyte precursor pool by controlling the lineage commitment of specific cell types (Fossett, 2001).

An additional factor that may be required to control lineage commitment is CtBP. This transcriptional corepressor may interact with FOG-1 and FOG-2 to repress erythrocyte differentiation, because a mutant version of FOG-2 lacking the consensus PXDL sequence fails to repress erythrocyte differentiation when ectopically expressed during Xenopus development. CtBP may be required for FOG protein repression of crystal cell production. It is noteworthy that CtBP likely functions during Drosophila hematopoiesis because a lacZ reporter gene inserted in the enhancer region of the CtBP gene is expressed in the larval plasmatocyte lineage. Thus, the FOG and CtBP class of transcriptional regulators may act together to control hemocyte lineage commitment in a pathway that is conserved evolutionarily (Fossett, 2001).

FOG function involves binding to its GATA partner's N-terminal zinc finger. Srp is the only known hematopoietic GATA factor in Drosophila and reportedly contains a single C-terminal zinc finger. However, a survey of the srp genomic sequence shows an ORF within the third intron of the gene that putatively encodes an N-terminal zinc finger with 96% homology to that of Pnr. This raises the possibility that Ush interacts with an alternatively spliced isoform of Srp during hematopoiesis (Fossett, 2001).

Ush appears to negatively regulate the cardiogenic function of the GATA-4 homolog Pnr, converting Pnr from a transcriptional activator to a repressor as observed during sensory bristle development. As with Ush, forced mesodermal expression of FOG-1, FOG-2, and DeltaFOG-2 (lacking a conserved motif that binds the corepressor C-terminal binding protein) also produces a diminution of cardial cells. These results demonstrate a functional conservation of the FOG proteins during Drosophila cardiogenesis, which most likely involves negative regulation of the cardiogenic activity of Pnr. In addition, forced expression of FOG proteins disrupts eye development-producing phenotypes that mimic pnr loss of function mutants, presumably by repressing Pnr activation of its downstream effector genes (Fossett, 2001).

The disruption of eye development and the repression of cardial cell production by FOG proteins occurred in the absence of the CtBP-binding motif. This is consistent with the work that shows that FOG-1 and FOG-2 repression of GATA-4 activation of cardiac promoters does not require the corepressor CtBP. Rather, conserved N-terminal regions of the murine FOG proteins were required for the repression of GATA-4 transcriptional activation, indicating that an alternative repressor mechanism may be used to negatively regulate GATA-4. An emerging hypothesis suggests that CtBP may be a hematopoietic corepressor, and an alternative corepressor may be required during heart development. Results showing that DeltaFOG-2 does not repress crystal cell production but does repress cardial cell production is evidence for this dual mechanism of FOG gene regulation during heart development and hematopoiesis in a single experimental organism (Fossett, 2001).

In conclusion, Ush and Lz function antagonistically during crystal cell lineage commitment and Ush is required to limit the overproliferation of crystal cells. This demonstrates a possible intersection between the FOG and AML-1 gene pathways, which may prove important for understanding vertebrate hematopoiesis. Furthermore, this study expands the molecular characterization of the earliest events of hematopoiesis in Drosophila, identifying additional conserved genes that establish the fly as a model organism for hematopoiesis (Fossett, 2001).

Inductive signaling is of pivotal importance for developmental patterns to form. In Drosophila, the transfer of TGFß (Dpp) and Wnt (Wg) signaling information from the ectoderm to the underlying mesoderm induces cardiac-specific differentiation in the presence of Tinman, a mesoderm-specific homeobox transcription factor. Evidence that the Gata transcription factor, Pannier, and its binding partner U-shaped, also a zinc-finger protein, cooperate in the process of heart development. Loss-of-function and germ layer-specific rescue experiments suggest that pannier provides an essential function in the mesoderm for initiation of cardiac-specific expression of tinman and for specification of the heart primordium. u-shaped also promotes heart development, but unlike pannier, only by maintaining tinman expression in the cardiogenic region. By contrast, pan-mesodermal overexpression of pannier ectopically expands tinman expression, whereas overexpression of u-shaped inhibits cardiogenesis. Both factors are also required for maintaining dpp expression after germ band retraction in the dorsal ectoderm. Thus, it is proposed that Pannier mediates as well as maintains the cardiogenic Dpp signal. In support, it is found that manipulation of pannier activity in either germ layer affects cardiac specification, suggesting that its function is required in both the mesoderm and the ectoderm (Klinedinst, 2003).

pnr and ush are both expressed in the mesoderm at the time of cardiac mesoderm formation, in addition to their expression in the dorsal ectoderm. Mesodermal expression of pnr is restricted to the dorsal cardiogenic margin, whereas ush extends more laterally. In order to assess the requirement for pnr and ush in initiating cardiac mesoderm and cardiac cell type-specific differentiation, tin expression was examined at progressively later developmental stages in null mutants for both pnr and ush. During mid-stage 11, tin is expressed segmentally in two regions of the mesoderm. The dorsal clusters of cells correspond to the cardiac precursor cells, whereas the lateral clusters will become part of the visceral mesoderm. In same stage pnr mutant embryos, tin expression is dramatically reduced in the clusters that correspond to the cardiac precursors, indicating that cardiogenesis is not being initiated. tin expression in the visceral mesodermal clusters, as well as tin expression earlier in development, is unaffected, suggesting the heart is a focal point for pnr function, which is consistent with its cardiac-restricted expression in the mesoderm. By contrast, ush mutant embryos initially seem to exhibit normal tin expression. At later stages, when tin expression is solely restricted to the heart cells, ush mutants display a progressively more severe reduction in tin expression, approaching the phenotype of pnr mutants. Thus, both pnr and ush are required for heart-specific tin expression, although ush seems to be initially dispensable (Klinedinst, 2003).

Even though tin is initially expressed in all heart progenitors, its expression is later turned off in some specific lineages, but continues to be expressed in many myocardial and pericardial cells. To determine which heart cells are affected in pnr and ush mutants, mutant embryos were examined with various markers. eve, for example, is co-expressed with tin in 11 clusters of heart progenitors, and these lineages give rise to a subset of pericardial cells. eve expression is only moderately reduced in pnr and hardly at all in ush mutants at early as well as later stages; this is accompanied by patterning defects at progressively later stages. By contrast, the lbe-expressing heart progenitors, which produce both myocardial and pericardial cells, are dramatically reduced in pnr but less so in ush mutants. Moreover, the svp-expressing cells, which also give rise to a mixed lineage, but cease to co-express tin at later stages, are dramatically reduced in both mutants. Thus, all lineage markers assayed are reduced in both mutants, but each is affected with disproportional severity, which is consistent with the idea that the formation of each cell type has a direct requirement for pnr and ush (Klinedinst, 2003).

Both tin and pnr have been shown to be targets of Dpp signaling at stage 9/10. It is proposed that dpp is necessary again at stage 11 to activate and maintain pnr and tin expression in the cardiogenic region of the mesoderm. First, pnr is activated with the help of early stage 11 tin, which is expressed broadly throughout the dorsal mesoderm, and dpp, which is expressed in a narrow dorsal ectodermal stripe. Then, at mid-stage 11, tin is restricted to the cardiogenic region with the help of mesodermal pnr as well as continuous ectodermal Dpp signaling. Once both are activated in the cardiogenic mesoderm, they are likely to contribute to the maintenance of each other's expression, probably aided again, but only moderately, by ectodermal Dpp signaling. This interpretation is consistent with mesodermal versus ectodermal expression of dominant-negative pnrEnR and the dpp target repressor encoded by brk. They are both equally effective in reducing cardiac-specific tin when expressed in the mesoderm, but ectodermal repression is more effective when dorsal-stripe dpp at stage 11 is also affected (as in the case of ZKr-Gal4>UAS-brk, but not with ZKr-Gal4>UAS-pnrEnR) (Klinedinst, 2003).

Mesodermal overexpression of ush and co-overexpression with pnr results in a decrease in the amount of cardiac-specific tin expression, suggesting that ush may not only be required along with pnr for heart development, but also play an inhibitory role. To test this hypothesis further, pnrD4, an allele that abolishes Ush binding to Pnr was overexpressed; not only ectopic tin expression was found at early stages of cardiogenesis, but also undiminished and even increased levels of expression at later stages. A similar phenotype was observed when both pnrD4 and ush were expressed throughout the mesoderm, suggesting that ush plays an anti-cardiogenic role by antagonizing the activity of wild-type Pnr, but not that of PnrD4. It would be interesting to see if pan-mesodermal overexpression of wild-type pnr in a ush mutant background results in ectopic tin expression similar to pnrD4, or if a minimal amount of ush activity is required to maintain normal and ectopic tin expression even with forced pnr expression. Interestingly, overexpression of both pnr and tin together in the mesoderm also causes a pnrD4-like phenotype, as assayed with Hand expression, suggesting that pnr and tin collaborate during initiation and subsequent differentiation of the heart progenitors (Klinedinst, 2003).

Although in vitro the Ush-related FOG factors are primarily known for their role as transcriptional repressors, they apparently can also function as co-activators: Fog2 can synergistically activate or repress the transcriptional activity of Gata4, depending on the (cardiac) promoter and cell line used, and FOG-1 can cooperate with Gata1 to transactivate NF-E2, an erythroid cell-specific promoter. Moreover, the ventricular hypoplasia and other heart defects observed in Fog2-deficient mice suggest a deficit rather than an excess in heart development. In addition, mice with an equivalent mutation to PnrD4 knocked into the Gata4 locus, thus eliminating binding to Fog2, exhibit in many ways a similar phenotype to Fog2-deficient mice. These data are consistent with the idea that Fog2 is normally involved in promoting rather than antagonizing cardiogenesis, similar to what was found with genetic studies during Drosophila heart development (Klinedinst, 2003).

The dual role of Ush suggests that the amount of Ush may be crucial for whether it exerts its function as a an activator or repressor, perhaps by binding to different sets of co-factors in a concentration-dependent manner. Alternatively, the mode of transcriptional regulation by Ush could be stage-dependent: at stage 11, Pnr and Ush cooperate as transcriptional activators in initiating cardiac-specific tin expression and heart development, but later Ush becomes a repressor to limit the transcriptional activation of tin by Pnr (Klinedinst, 2003).

pnr and ush are initially broadly expressed in the dorsal ectoderm of the early embryo, but by germband retraction the ectodermal expression of pnr is confined to a narrow stripe of cells along the border of the amnioserosa, which overlaps with the thin dorsal dpp stripe. The early ectodermal expression of ush is restricted to the presumptive amnioserosa, and by germband extension, ush also overlaps with the dorsalmost region of the ectoderm. These patterns of expression suggest that pnr and ush may be acting in both germ layers. The genetic data, including germ layer-specific expression of wild-type and dominant-negative pnr constructs, as well as germ layer-specific rescue experiments suggest strongly that pnr and ush function is not only needed in the mesoderm, but also in the ectoderm for heart formation. The ectodermal requirement for pnr and ush in heart development is probably achieved via the maintenance of dpp expression, since dorsal stripe dpp expression diminishes in pnr and ush mutants and ectodermal interference with pnr, ush and/or dpp-signaling function compromises the normal progression of heart development (Klinedinst, 2003).

U-shaped and leading edge cells

The leading edge (LE) is a single row of cells in the Drosophila embryonic epidermis that marks the boundary between two fields of cells: the amnioserosa and the dorsal ectoderm. LE cells play a crucial role in the morphogenetic process of dorsal closure and eventually form the dorsal midline of the embryo. Mutations that block LE differentiation result in a failure of dorsal closure and embryonic lethality. How LE cells are specified remains unclear. To explore whether LE cells are specified in response to early dorsoventral patterning information or whether they arise secondarily, the extent of amnioserosa and dorsal ectoderm was altered genetically, and LE cell fate was assayed. No expansion of LE fate is observed in dorsalized or ventralized mutants. Furthermore, the LE fate arises as a single row of cells, wherever amnioserosa tissue and dorsal epidermis are physically juxtaposed. Taken together these data indicate that LE formation is a secondary consequence of early zygotic dorsal patterning signals. In particular, proper LE specification requires the function of genes such as u-shaped and hindsight, which are direct transcriptional targets of the early Decapentaplegic/Screw patterning gradient, to establish a competency zone from which LE arises. It is proposed that subsequent inductive signaling between amnioserosa and dorsal ectoderm restricts the formation of LE to a single row of cells (Stronach, 2001).

Using mutations that influence DV patterning, it is possible to alter the size and distribution of BMP target gene expression patterns, which indicate the extent of amnioserosa and dorsal ectodermal cell fates. If LE fate was specified directly by a particular threshold level of BMP signal, then one would expect LE fate to be perturbed in concert with amnioserosa and dorsal ectoderm fates in DV mutants. Mutations in genes such as dorsal, Toll, brinker and short gastrulation alter the size of BMP target gene expression domains; however, these mutants failed to alter specification of LE fate. Among these genotypes, brk and sog specifically modulate the shape of the BMP signaling gradient in a region where LE fate might arise, yet LE formation in these mutants is fundamentally normal. Furthermore, in dorsalized embryos, LE cells were observed regularly at the boundary between amnioserosa and dorsal ectoderm even when the morphology of these tissues was severely disrupted. Islands of amnioserosa cells within a field of ectoderm were consistently surrounded with a single row of LE cells, independent of the number of amnioserosa cells constituting the island. The converse situation also occurred; again, a single row of LE cells formed at the boundary between the ectoderm and amnioserosa (Stronach, 2001).

DV mutants were also analyzed to determine whether a decrease in BMP signaling activity converts amnioserosa to LE as predicted by a gradient patterning model. A range of ventralizing mutations (cactus, sog, screw, dpp) displaying progressive loss of amnioserosa tissue did not give rise to embryos with an expanded domain of LE cells. In fact, LE cells were not detected in the absence of amnioserosa. No situation was found in which an altered BMP gradient was associated with expanded LE fate, thus the prediction of a direct gradient response model does not explain LE fate specification (Stronach, 2001).

Notably, DV mutant embryos that perturb the BMP gradient, also perturb the expression domains of target genes, including u-shaped and hindsight, without altering LE specification. However, loss of ush and hnt function results in specific and distinct perturbations in LE formation. Thus, the interpretation that LE fate specification is not a direct early response to the BMP gradient is favored, but rather is a secondary consequence of the specification of dorsal fates through the action of BMP target genes like ush and hnt (Stronach, 2001).

Taken together, these results raise the possibility that amnioserosa may be required for LE formation. To address the function of amnioserosa for LE specification, puc enhancer expression was examined in several mutants of the U-shaped class, including u-shaped (ush) and hindsight (hnt). Incidentally, the dorsal expression domains of these genes are directly regulated by DV patterning signals. In these mutant embryos, the amnioserosa tissue is fated normally and begins to differentiate up to stage 11, but then degenerates prematurely. In both ush and hnt mutants, programmed cell death takes place over the course of a few hours, with elimination of amnioserosa cells by stage 13 -- the time when dorsal closure would normally commence. Unexpectedly, different patterns of expression were observed with the puc enhancer in the two mutants. In ush embryos, ß-gal-positive cells were not detected. In contrast, hnt mutant embryos displayed Puc-positive LE cells at the edge of the dorsal ectoderm, albeit with less uniform expression than normally observed. To confirm these observations, the accumulation of dpp mRNA in the LE was examined. Similar to puc enhancer expression, differential expression of dpp was observed in ush versus hnt mutant embryos. ush mutant embryos show a consistent and significant reduction in LE dpp expression, although residual dpp transcripts are seen. dpp expression appears relatively normal in hnt mutant embryos (Stronach, 2001).

In addition to the differential expression of two LE markers in the U-shaped mutants, ectopic expression of LE markers is observed only in hnt mutant embryos. ß-gal-positive cells were observed in the region of the amnioserosa in hnt mutants as early as stage 11, raising the possibility that this could be an example of expanded LE cell fates. These cells adopt only partial LE cell fate, for the following reasons. These cells do not express the LE marker Fasciclin III, but do express two other LE molecules, albeit aberrantly. puc, for example, is expressed precociously in these cells, preceding Fasciclin III expression in the ectoderm, and dpp is rarely but reproducibly expressed. Additionally, cells in this region express amnioserosa fate markers such as race, through stage 11. Thus, based on the possibility that these cells may co-express LE and amnioserosa markers during stage 11, their identity cannot be unequivocally determined. These results may indicate that these cells are of mixed fate. The presence of ectopic LE-like cells in hnt mutant embryos, coupled with the severe reduction of LE fate markers in ush mutants, suggest that the distinction between amnioserosa and LE is a secondary consequence of Hnt and Ush functions, not a direct result of specific BMP signaling thresholds (Stronach, 2001).

If LE cells are specified as a secondary consequence of DV patterning gradients, then what additional mechanisms are at work to define LE as a single row of cells? The data are consistent with several mechanisms. One possibility is that specification of the LE involves the combinatorial action of nested sets of transcriptional regulators, including Hnt dorsally and Ush in a broader domain. Accordingly, loss of Hnt function is predicted to result in a failure to differentiate amnioserosa, coupled with dorsal expansion of more lateral fates, such as the LE. Consistent with this model, hnt mutant embryos display Puc-positive cells with partial LE character in the region of the dying amnioserosa during stage 11. These results suggest that Hnt may be necessary to distinguish amnioserosa from LE fate at the time of extended germ band stage. This timing is late, relative to the timing of the early BMP threshold response, further supporting the notion that LE specification is a secondary consequence of initial BMP signaling (Stronach, 2001).

Ush may play a role in differentiation of more lateral fates adjacent to the amnioserosa and the Hnt expression domain. Indeed, Ush function is essential for LE development because LE does not form in ush mutant embryos. Based on these results, it is imagined that Ush could define a competency zone from which LE cells arise, or Ush could participate in generating or modulating a signal(s) for communication between the differentiating amnioserosa and dorsal ectoderm. Ush is related to mammalian zinc-finger protein family, Friend of GATA (FOG), which has been shown to participate as a cofactor with GATA transcription factors. Together, these protein complexes regulate cell fate determination multiple times during both mammalian and Drosophila development. Interestingly, FOG2, a mammalian homolog of Ush, appears to be required during an inductive signaling event between two distinct tissues in the mouse heart, suggesting that inductive processes in development may commonly use the function of Ush family members. It has not been determined whether the function of Ush in LE cell specification is localized to the amnioserosa, the dorsal ectoderm, or both. Experiments to replace Ush function in a tissue-specific manner should address this issue (Stronach, 2001).

Although transcriptional targets of BMP signaling, such as ush and hnt, among others, define at least three specific threshold responses, the size difference between the nested expression domains of these markers still fails to account for a cell fate defined by a single row of cells. An additional mechanism to explain the spatially restricted stripe of LE cells is through an inductive signaling event. From the analysis of dorsalized mutants, it is observed that LE forms as a result of the juxtaposition of amnioserosa tissue with dorsal ectoderm, which may provide spatially limited activation of the JNK pathway. Thus, restricted expression of JNK target genes, such as puc and dpp may be a direct result of a signal that specifies LE (Stronach, 2001).

Communication between the amnioserosa and the dorsal ectoderm during embryogenesis has been suggested in two cases recently: (1) Hnt expression in the amnioserosa is required nonautonomously for proper cell rearrangements in the dorsal ectoderm, associated with retraction of the embryonic germband; (2) the raw gene product appears to be expressed in the amnioserosa, though it influences the activity of the JNK pathway in the ectoderm during dorsal closure. As amnioserosa and ectoderm develop, they may acquire different cell affinities, which cause them to sort into separate domains or islands (in the case of dorsalized embryos), displaying smooth borders at their interface. A difference in cell adhesion at the boundary may be sufficient to generate signaling for LE specification similar to inductive mechanisms at work at the compartmental boundaries of larval imaginal discs. The challenge now will be to identify molecules that may participate in an inductive signal (Stronach, 2001).

These results suggest that a multistep process determines the LE as a single row of cells. LE does not form directly in response to discrete intermediate levels of BMP signaling activity, but forms secondarily by the action of transcriptional regulators that are themselves BMP target genes. Among these targets, Hnt and Ush define a LE competency zone that is expanded in hnt mutants and eliminated in ush mutants. It is proposed that from within the competency zone, LE fate is further refined to a single row by an unknown inductive signal generated by the physical juxtaposition of amnioserosa with dorsal ectoderm. This signal activates the JNK pathway that regulates localized expression of dpp and puc (Stronach, 2001).

U-shaped protein domains required for repression of cardiac gene expression in Drosophila

U-shaped is a zinc finger protein that functions predominantly as a negative transcriptional regulator of cell fate determination during Drosophila development. In the early stages of dorsal vessel formation, the protein acts to control cardioblast specification, working as a negative attenuator of the cardiogenic GATA factor Pannier. Pannier and the homeodomain protein Tinman normally work together to specify heart cells and activate cardioblast gene expression. One target of this positive regulation is a heart enhancer of the Drosophila mef2 gene and U-shaped has been shown to antagonize enhancer activation by Pannier and Tinman. Protein domains of U-shaped required for its repression of cardioblast gene expression were mapped. Such studies showed GATA factor interacting zinc fingers of U-shaped are required for enhancer repression, as well as three small motifs that are likely needed for co-factor binding and/or protein modification. These analyses have also allowed for the definition of a 253 amino acid interval of U-shaped that is essential for its nuclear localization. Together, these findings provide molecular insights into the function of U-shaped as a negative regulator of heart development in Drosophila (Tokusumi, 2007).

Through the use of an established assay to monitor Pannier-dependent cardioblast gene activity, and the generation and analysis of 20 different versions of the U-shaped protein, six U-shaped domains required for its repression of mef2 gene expression were identified. Three previously identified GATA-interacting zinc fingers of U-shaped are critical for this inhibitory property, which likely reflects the necessity of multiple zinc fingers forming a strong and stable interaction with the Pannier GATA factor. Whether Pannier-U-shaped complex formation interferes with the physical interaction of Pannier and Tinman in the synergistic activation of D-mef2 target sequences remains to be determined (Tokusumi, 2007).

U-shaped may also directly antagonize Pannier function as has been shown in the process of sensory bristle formation. Heterodimerization of U-shaped with Pannier converts the GATA transcriptional activator into a transcriptional repressor, an event that leads to the non-activation of target genes such as ac, sc, and wg in the dorsal notum of the wing disc. It is noteworthy that the results demonstrated the requirement of a binding site for the CtBP transcriptional co-repressor protein. In the context of the cardiogenic mesoderm, the combination of Pannier, U-shaped, and CtBP may prevent mesodermal cells from initiating gene expression programs needed for the specification of the cardioblast fate. In contrast, the combination of Pannier, Dorsocross, and Tinman is known to activate a regulatory network programming heart cell specification and cardioblast differentiation. Additional studies will be needed to elucidate the potential role of CtBP as an antagonist of cardiac gene expression and heart development. If U-shaped-CtBP interaction plays a crucial inhibitory role, then one would predict comparable dorsal vessel phenotypes for CtBP and U-shaped in loss- and gain-of-function genetic backgrounds (Tokusumi, 2007).

Finally, these studies have defined a 253 amino acid region required for nuclear localization of U-shaped. Within this interval, two highly basic amino acid sequences have been defined as being essential for U-shaped ability to inhibit Pannier-mediated cardiac gene expression. Perhaps, these motifs are required to facilitate the binding and stable interaction of co-repressor proteins with U-shaped. Another possibility is that these sequences serve as sites for post-translational modification, such as acetylation and/or methylation. Selective protein modification(s) may be a requisite for U-shaped to act as a negative modulator of Pannier transcription factor function during cardiogenesis in Drosophila (Tokusumi, 2007).

Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity

Leukocyte-like cells called hemocytes have key functions in Drosophila innate immunity. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. In the absence of immune challenge, plasmatocytes are the predominant hemocyte type detected, while crystal cells and lamellocytes are rare. However, upon infestation by parasitic wasps, or in melanotic mutant strains, large numbers of lamellocytes differentiate and encapsulate material recognized as 'non-self'. Current models speculate that lamellocytes, plasmatocytes and crystal cells are distinct lineages that arise from a common prohemocyte progenitor. This study shows that over-expression of the CoREST-interacting transcription factor Charlatan (Chn) in plasmatocytes induces lamellocyte differentiation, both in circulation and in lymph glands. Lamellocyte increases are accompanied by the extinction of plasmatocyte markers suggesting that plasmatocytes are transformed into lamellocytes. Consistent with this, timed induction of Chn over-expression induces rapid lamellocyte differentiation within 18 hours. Double-positive intermediates between plasmatocytes and lamellocytes were observed, and it was shown that isolated plasmatocytes can be triggered to differentiate into lamellocytes in vitro, either in response to Chn over-expression, or following activation of the JAK/STAT pathway. Finally, plasmatocytes were marked, and lineage tracing showed that these differentiate into lamellocytes in response to the Drosophila parasite model Leptopilina boulardi. Taken together, these data suggest that lamellocytes arise from plasmatocytes and that plasmatocytes may be inherently plastic, possessing the ability to differentiate further into lamellocytes upon appropriate challenge (Stofanko, 2010).

Drosophila provide a genetically tractable model system to investigate cellular innate immune function. This report examined the origins of lamellocytes, which are Drosophila hemocytes that differentiate in response to parasite infestation. Over-expression of Chn in plasmatocytes induces lamellocyte differentiation, both in circulation and in lymph glands. The data indicate that Chn over-expression transforms plasmatocytes into lamellocytes. Consistent with this, double-positive intermediates between plasmatocytes and lamellocytes were detected, and it was shown that isolated plasmatocytes in vitro can be triggered to differentiate into lamellocytes following Chn over-expression. This property is not limited to Chn since it was observed that other stimuli, including activation of the JAK/STAT pathway and the natural response to parasitic wasp infestation, also induced lamellocyte formation from plasmatocytes (Stofanko, 2010).

The data suggest that Chn may control lamellocyte development. Previously defined regulators of lamellocyte development include the transcription factor STAT92E, the FOG-1 homologue Ush, and the NURF chromatin remodelling complex. STAT92E functions as an inducer of lamellocyte development, as gain-of-function hopTum-l mutants that activate the JAK/STAT pathway cause lamellocyte over-production. In contrast, both loss-of-function ush and Nurf mutants exhibit increased lamellocyte numbers. Like the homologous FOG-1-GATA-1 pairing, Ush modulates activity of the Drosophila GATA factor Srp to favour plasmatocyte differentiation. Recent data in mammalian systems indicates that FOG-1 mediates its effect on GATA-1 in part via recruitment of the transcriptional co-repressor NURD, suggesting that Ush functions similarly to repress expression of gene targets required for lamellocyte differentiation in plasmatocytes. Likewise, NURF also inhibits lamellocyte differentiation, in this case by preventing activation of targets of the JAK/STAT pathway (Stofanko, 2010).

The current biochemical data suggest that Chn is a transcription repressor since Chn recruits the co-repressor complex CoREST. Indeed it has been shown that Chn over-expression represses Delta expression in the eye imaginal disk, while this study has shown that Chn over-expression is accompanied by repression of some plasmatocyte markers. However, it was also shown that Chn over-expression leads to elevated expression of lamellocyte markers, and it has been demonstrated that Chn over-expression increases expression of the proneural genes Achaete and Scute. These data do not allow discrimination of whether Chn functions entirely as a transcriptional repressor or whether it may also activate transcription. However, the temporally-controlled Chn induction system (Pxn-Gal4 TARGET) that was utilized in this study will allow the primary gene targets of Chn to be determined. By analyzing transcriptional profiles of hemocytes at defined time points after Chn over-expression the primary responders to Chn over-expression will be able to be identified. It will be possible to discriminate whether these targets are preferentially activated or repressed, and also subsequently determine recruitment of transcription co-activator or co-repressor complexes such as CoREST at these targets using chromatin immunoprecipitation (Stofanko, 2010).

The data demonstrating that lamellocytes can originate from plasmatocytes sheds new light on hemocyte lineages. Current models of hemocyte lineages speculate that plasmatocytes, crystal cells and lamellocytes are distinct lineages that arise separately from a common stem cell or prohemocyte. This study proposes, however, that prohemocytes generate either crystal cells or plasmatocytes. It is suggested that plasmatocytes are a plastic population that can generate other frequently observed hemocyte types including lamellocytes. This model is strikingly reminiscent of the initial hemocyte lineages first proposed more than 50 years ago. According to that analysis prohemocytes were predicted to generate either crystal cells or plasmatocytes, with plasmatocytes differentiating further into activated cells (podocytes) and then lamellocytes. This model has support from a number of experimental studies including this study. Foremost among these are recent studies of hemocyte functions of Ush. Dominant-negative Ush variants are able to induce lamellocyte differentiation and it has been suggested that Ush regulates lamellocyte differentiation from a potential plasmatocyte. Secondly, lamellocyte differentiation in response to Salmonella infection is blocked in decapentaplegic mutants with a corresponding increase in plasmatocyte number, suggesting that lamellocytes arise from plasmatocytes or a common precursor (Stofanko, 2010).

Two recent studies also suggest that plasmatocytes are a plastic population that may be able to differentiate into lamellocytes. Marking of embryonic plasmatocytes using the gcm-GAL4 or sn-GAL4 drivers and an act5C>stop>GAL4 flip-out transgene shows that lamellocytes that arise in larvae after wasp infestation may originate from cells that had expressed gcm-GAL4 or sn-GAL4 in embryos. Similar results have also been observed using the act5C>stop>GAL4 flip-out transgene and Pxn-GAL4 and eater-GAL4. In both these cases the elicitor of the FLP/FRT activation event and the subsequent sustained marker are the same, namely GAL4 expression. However, in the current lineage tracing experiments, GAL4 expression initiates the FLP/FRT activation of a distinct marker, lacZ protein. These data, taken together with lineage tracing experiments and in vitro differentiation studies suggest that the plasmatocyte is an inherently plastic cell type that is capable of being reprogrammed to tailor immune responses to suit the infectious threats faced by the host. In humans, lymphocyte and leukocyte plasticity has a significant impact on immune responses. An important future challenge is to establish the full spectrum of Drosophila plasmatocyte heterogeneity and exploit the utility of the Drosophila genetic system to dissect the mechanisms that regulate such leukocyte plasticity (Stofanko, 2010).

The Iroquois Complex Is Required in the Dorsal Mesoderm to Ensure Normal Heart Development in Drosophila

Drosophila heart development is an invaluable system to study the orchestrated action of numerous factors that govern cardiogenesis. Cardiac progenitors arise within specific dorsal mesodermal regions that are under the influence of temporally coordinated actions of multiple signaling pathways. The Drosophila Iroquois complex (Iro-C) consists of the three homeobox transcription factors araucan (ara), caupolican (caup) and mirror (mirr). The Iro-C has been shown to be involved in tissue patterning leading to the differentiation of specific structures, such as the lateral notum and dorsal head structures and in establishing the dorsal-ventral border of the eye. A function for Iro-C in cardiogenesis has not been investigated yet. Loss of the whole Iroquois complex, as well as loss of either ara/caup or mirr only, affect heart development in Drosophila. The data indicate that the GATA factor Pannier requires the presence of Iro-C to function in cardiogenesis. A detailed expression pattern analysis of the members of the Iro-C revealed the presence of a possibly novel subpopulation of Even-skipped expressing pericardial cells and seven pairs of heart-associated cells that have not been described before. Taken together, this work introduces Iro-C as a new set of transcription factors that are required for normal development of the heart. As the members of the Iro-C may function, at least partly, as competence factors in the dorsal mesoderm, these results are fundamental for future studies aiming to decipher the regulatory interactions between factors that determine different cell fates in the dorsal mesoderm (Mirzoyan, 2013).

Tissue patterning requires the spatial and temporal coordinated action of signals providing instructive or permissive cues that result in the specification of different cell types and their subsequent differentiation into different lineages. This analyses of Iro-C deficient embryos demonstrate that ara/caup and mirr are required in the dorsal mesoderm for normal heart development. The heart phenotypes could be caused by alterations of the fine balance of the interactions between factors of the cardiac signaling network. In early stage Drosophila embryos the mesoderm is patterned along the anterior-posterior (AP) axis with cardiac and somatic mesodermal domains alternating with visceral mesodermal domains. The tin-positive mesoderm is specified as cardiac and somatic mesoderm under the influence of combined Dpp and Wg signaling. Subsequently, the cardiac and somatic mesodermal domains are further subdivided by the action of the Notch pathway and MAPK signaling activated by EGFR and FGFR. The Eve-expressing cell clusters that give rise to pericardial and DA1 somatic muscle cells, as well as the Doc expression pattern, distinguish the cardiac and somatic mesodermal domain from the visceral mesodermal domain. The early expression pattern of Ara/Caup and Mirr at stages 10/11 suggests a role for Iro-C in patterning the dorsal mesoderm along the AP axis. Consistent with their previously described functions in other developmental contexts, members of the Iro-C may integrate signaling inputs and interact with other transcription factors to specify different dorsal mesodermal derivatives. Activation of the Iro-C by the EGFR pathway is required for the specification of the notum. Mirr was shown to interpret EGFR signaling by eliciting a specific cellular response required for patterning the follicular epithelium. During Drosophila eye development, mirr expression can be regulated by Unpaired, a ligand that activates JAK/Stat signaling. In fact, the JAK/Stat signaling pathway has only recently been added to the signaling pathways that function in Drosophila cardiogenesis. In chromatin immunoprecipitation experiments caup was identified as a target of Stat92E, which is the sole transcriptional effector of the JAK/Stat signaling pathway in Drosophila. Interestingly, the increase of Odd-pericardial cells and the additional Tin-expressing cells that were the characteristic phenotypes in ara/caup (iroDFM1) and in mirr (mirre48) mutants are highly similar to the phenotypes in stat92E mutants described by Johnson (Johnson, 2011). Also, as described for stat92E mutants, cell adhesion defects were noticed in a number of embryos as determined by the distant location of some Tin-expressing cells from the forming heart tube. As for establishing a possible link between JAK/Stat and Iro-C in the dorsal mesoderm and specifically in cardiogenesis, it would be necessary to determine for example whether caup and mirr can rescue the heart phenotype of stat92E mutants. Also, it would be interesting to compare the expression of the other crucial heart marker genes, Tup, Doc and Pnr, in stat92E mutants at early stages to determine to what extent the phenotypes of embryos mutant for Iro-C and for JAK/Stat signaling are similar (Mirzoyan, 2013).

Members of the Iro-C were shown to be positively or negatively regulated by signaling pathways that play crucial roles in heart development. Conversely, the Iro-C factors can also regulate the activity of at least one of these pathways. Specifically, Ara/Caup, as well as Mirr were shown to regulate the expression of the glycosyltransferase fringe and as a consequence modulate Notch signaling activity in the eye. In the dorsal mesoderm, the lateral inhibitory function of Notch signaling establishes the proper number of heart and muscle progenitors. Given the fact that Iro-C can regulate Notch activity it may be that the loss of Iro-C leads to an imbalance of progenitor cell specification resulting in an abnormal number of heart cells. Further studies are required to decipher the molecular mechanism by which Iro-C could integrate diverse signaling inputs and thereby function in the specification and differentiation of the different dorsal mesodermal derivatives (Mirzoyan, 2013).

To determine whether Iro-C can be positioned into the early transcriptional network that determines a cardiac lineage, this study investigated the interdependency between crucial cardiac factors and Iro-C during cardiogenesis. Analyses of the expression of Ara/Caup and Mirr in tin346, Df(3L)DocA, pnrVX6 and tupisl-1 embryos demonstrated the dependency of Ara/Caup and Mirr on all four factors. The strongest loss of Ara/Caup and Mirr expression was observed in tin346 and Df(3L)DocA mutants, which clearly places tin and Doc upstream of Ara/Caup and Mirr. In tupisl-1 and in pnrVX6 mutant embryos, Ara/Caup and Mirr were strongly downregulated, however regarding Ara/Caup, some expression remained in segmental patches suggesting a different level of regulation. The currently available data indicates a positive and a negative regulatory effect of pnr on Iro-C. Whereas pnr restricts Iro-C expression in the dorsal ectoderm and in the wing disc, there is also evidence that pnr can positively regulate Iro-C in the wing disc. Whether Pnr activates or represses Iro-C appears to depend on the presence of U-shaped (Ush), a protein that modulates the transcriptional activity of Pnr. In the wing disc it was shown that an Iro-C-lacZ (IroRE2-lacZ) construct was activated in cells that contained Pnr but were devoid of Ush. The data demonstrate that in the dorsal mesoderm, the expression of Ara/Caup and Mirr depends on pnr. Additionally this analyses show that pnr expression is independent of Iro-C. This finding is intriguing with respect to the downregulation of Tup and Doc in Iro-C mutants. Pnr is required for the maintenance of Doc and for the initiation and/or maintenance of Tup. Since Iro-C mutants exhibit a reduction in Doc-positive cells despite the presence of pnr, members of the Iro-C appear to be required independently or in addition to pnr to maintain expression of Doc. This could be investigated by expressing ara, caup and/or mirr in the mesoderm of pnr mutants to determine whether these factors are able to restore Doc expression. Alternatively, it may be that Iro-C is required indirectly meaning that its main function is to provide a molecular context in which Pnr can be active. For example, it is known that Ush can bind to Pnr thereby inactivating Pnr function. It is conceivable that the absence of Iro-C affects the spatial expression of Ush. If, in the absence of Iro-C, the expression domain of Ush shifts into the Pnr expression domain, Ush could bind to Pnr and inactivate it in the region where Pnr is required to maintain the expression of Tup and Doc. Adding to the complexity of the interpretation of the observed phenotypes is the finding that the majority of embryos that are mutant for ara/caup or for mirr were characterized by supernumerary Tin-positive cells in the cardiac region by stage 11/12. This phenotype could still be observed at later stages when the heart tube forms. The additional Tin-positive cells are pericardial cells as determined by the expression of Prc around the Tin-expressing cells. Also, no increase was observed of Dmef2-positive myocardial cells. Hence, the data suggests a different level of regulation of Tin by the Iro-C. Similar to the findings of Johnson (2011), it may be that Iro-C is normally required to restrict Tin expression at an early stage. The regulation of Tin expression can be divided into four phases. The phenotype this study observed occurs when Tin expression becomes restricted to the myo- and pericardial cells in the cardiac region. In summary, the data adds Iro-C to tin, pnr, Doc and tup whose concerted actions establish the cardiac domains in the dorsal mesoderm. Further studies are required to re-evaluate the current understanding of the interactions between factors of the cardiac transcriptional network (Mirzoyan, 2013).

According to the expression pattern of Ara/Caup and Mirr it was possible to distinguish between an early and late role for these factors, the latter being a role in the differentiation of heart cells (Mirzoyan, 2013).

This analyses of the expression of Ara/Caup and Mirr during embryogenesis led to the identification of hitherto unknown heart-associated cells. Seven pairs of Ara/Caup and Mirr expressing cells and seven pairs of Mirr only expressing cells were detected that were located along the dorsal vessel. No co-expression was detected with any of the known pericardial cell markers. Because there are seven pairs of these cells segmentally arranged, it was tempting to speculate that these cells may function, for example, as additional attachment sites for the seven pairs of alary muscles. The alary muscles attach the heart to the dorsal epidermis and their extensions can be visualized by Prc. Due to the lack of markers little is known about the development of the alary muscles. Previous work demonstrated that the alary muscles attach to the dorsal vessel in the vicinity of the Svp pericardial cells and, in addition, more laterally to one of two distinct locations on the body wall. Maybe it is the Mirr-positive cells that identify the more lateral locations. Clearly, a detailed analysis is needed to identify the function of the Ara/Caup- and Mirr- as well as Mirr-expressing cells that are positioned along the heart tube and whose existence has now been revealed. Additionally, on each side at the anterior end of the dorsal vessel four pericardial cells were identified that co-express Ara/Caup and Eve. Their location at the anterior tip of the heart is intriguing. Further analysis is required to unambiguously determine whether these cells are, for example, the wing heart progenitor cells or the newly identified heart anchoring cells. It is also possible that they represent a yet undefined, novel subpopulation of pericardial cells. In any case, this finding suggests that Ara/Caup plays a role in the diversification of pericardial heart cell types. Future experiments aim to determine the developmental fate of these cells (Mirzoyan, 2013).

Taken together, this investigation of a role for Iro-C in heart development introduces ara/caup and mirr as additional components of the transcriptional network that acts in the dorsal mesoderm and as novel factors that function in the diversification of heart cell types (Mirzoyan, 2013).

The results show that the role of the Iro-C and its individual members, respectively, appears to be rather complex and awaits in-depth analyses. Nevertheless, this work raises important questions regarding the current understanding of interactions between the well-characterized transcription factors that will be addressed in future studies (Mirzoyan, 2013).

Cellular mechanics of germ band retraction in Drosophila

Germ band retraction involves a dramatic rearrangement of the tissues on the surface of the Drosophila embryo. As germ band retraction commences, one tissue, the germ band, wraps around another, the amnioserosa. Through retraction the two tissues move cohesively as the highly elongated cells of the amnioserosa contract and the germ band moves so it is only on one side of the embryo. To understand the mechanical drivers of this process, a series of laser ablations was designed that suggest a mechanical role for the amnioserosa. first, it was found that during mid retraction, segments in the curve of the germ band are under anisotropic tension. The largest tensions are in the direction in which the amnioserosa contracts. Second, ablating one lateral flank of the amnioserosa reduces the observed force anisotropy and leads to retraction failures. The other intact flank of amnioserosa is insufficient to drive retraction, but can support some germ band cell elongation and is thus not a full phenocopy of ush mutants. Another ablation-induced failure in retraction can phenocopy mys mutants, and does so by targeting amnioserosa cells in the same region where the mutant fails to adhere to the germ band. It is concluded that the amnioserosa must play a key, but assistive, mechanical role that aids uncurling of the germ band (Lynch, 2013).


REFERENCES

Ashe, H. L., Mannervik, M. and Levine, M. (2000). Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127: 3305-3312. PubMed Citation: 10887086

Crispino, J. D., et al. (2001). Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 15: 839-844. 11297508

Crozatier M., et al. (2004). Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 2: E196. PubMed Citation: 15314643

Cubadda, Y., et al. (1997). u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila. Genes Dev. 11(22): 3083-3095. PubMed Citation: 9367989

Deconinck, A. E., et al. (2000). FOG acts as a repressor of red blood cell development in Xenopus. Development 127(10): 2031-40. PubMed Citation: 10769228

Dragojlovic-Munther, M. and Martinez-Agosto, J. A. (2013). Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function. Dev Biol 384: 313-330. PubMed ID: 23603494

Fox, A. H., et al. (1998). Key residues characteristic of GATA N-fingers are recognized by FOG. J. Biol. Chem. 273(50): 33595-603. PubMed Citation: 9837943

Fox, A. H., et al. (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18(10): 2812-2822. PubMed Citation: 10329627

Garcia-Garcia, M. J., et al. (1999). Different contributions of pannier and wingless to the patterning of the dorsal mesothorax of Drosophila. Development 126: 3523-3532. PubMed Citation: 10409499

Garriga-Canut, M. and Orkin, S. H. (2004). Transforming acidic Coiled-Coil Protein 3 (TACC-3) controls Friend-of-GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J. Biol. Chem. 279: 23597-23605. PubMed Citation: 15037632

Fossett, N., et al. (2000). The multitype zinc-finger protein U-shaped functions in heart cell specification in the Drosophila embryo. Proc. Natl. Acad. Sci. 97: 7348-7353. PubMed Citation: 10861002

Fossett, N., et al. (2001). The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc. Natl. Acad. Sci. 98: 7342-7347. 11404479

Frank, L. H. and Rushlow, C. (1996). A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development 122(5): 1343-1352. PubMed Citation: 8625823

Ghazi, A., Paul, L. and VijayRaghavan, K. (2003). Prepattern genes and signaling molecules regulate stripe expression to specify Drosophila flight muscle attachment sites. Mech. Dev. 120: 519-528. 12782269

Goldman-Levi, R., et al. (1996). Cellular pathways acting along the germband and in the amnioserosa may participate in germband retraction of the Drosophila melanogaster embryo. Int. J. Dev. Biol. 40(5): 1043-1051. PubMed Citation: 8946251

Haenlin, M., et al. (1997). Transcriptional activity of pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila. Genes Dev 11(22): 3096-3108. PubMed Citation: 9367990

Hyun, S., et al. (2009). Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139(6): 1096-108. PubMed Citation: 20005803

Jin, H., Kim, V. N. and Hyun, S. (2012). Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev 26: 1427-1432. Pubmed: 22751499

Johnson, A. N., Mokalled, M. H., Haden, T. N. and Olson, E. N. (2011). JAK/Stat signaling regulates heart precursor diversification in Drosophila. Development 138: 4627-4638. PubMed ID: 21965617

Jung, S. H., Evans, C. J., Uemura, C. and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132: 2521-2533. PubMed Citation: 15857916

Klinedinst, S. L. and Bodmer, R. (2003). Gata factor Pannier is required to establish competence for heart progenitor formation. Development 130: 3027-3038. 12756184

Krivega, I., Dale, R. K. and Dean, A. (2014). Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev 28: 1278-1290. PubMed ID: 24874989

Krzemien J., et al. (2007). Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446: 325-328. PubMed Citation: 17361184

Lee, G. J., Jun, J. W. and Hyun, S. (2014). MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells. Insect Mol Biol. PubMed ID: 25492518

Liew, C. K., et al. (2004). Zinc fingers as protein recognition motifs: structural basis for the GATA-1/friend of GATA interaction. Proc. Natl. Acad. Sci. 102(3): 583-8. 15644435

Lynch, H. E., Crews, S. M., Rosenthal, B., Kim, E., Gish, R., Echiverri, K. and Hutson, M. S. (2013). Cellular mechanics of germ band retraction in Drosophila. Dev Biol. 384(2): 205-13. PubMed ID: 24135149

Mandal L., et al. (2007). A Hedgehog- and Antennapedia-dependent niche maintains Drosophila hematopoietic precursors. Nature 446: 320-324. PubMed Citation: 17361183

Mirzoyan, Z. and Pandur, P. (2013). The Iroquois Complex Is Required in the Dorsal Mesoderm to Ensure Normal Heart Development in Drosophila. PLoS One 8: e76498. PubMed ID: 24086746

Querfurth, E., et al. (2000). Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev. 14: 2515-2525. PubMed Citation: 11018018

Rothbacher, U., et al. (2007). A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 134: 4023-4032. Medline abstract: 17965050

Sato, M. and Saigo, K., et al. (2000). Involvement of pannier and u-shaped in regulation of Decapentaplegic-dependent wingless expression in developing Drosophila notum. Mech. Dev. 93: 127-138. PubMed Citation: 10781946

Sinenko S. A., et al. (2009). Dual role of Wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16: 756-763. PubMed Citation: 19460351

Sorrentino, R. P., Carton, Y. and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243: 65-80. PubMed Citation: 11846478

Sorrentino, R. P., Tokusumi, T. and Schulz, R. A. (2007). The Friend of GATA protein U-shaped functions as a hematopoietic tumor suppressor in Drosophila. Dev. Biol. 311(2): 311-23. PubMed Citation: 17936744

Stern, M. D., et al. (2009). CtBP is required for proper development of peripheral nervous system in Drosophila. Mech. Dev. 126(1-2): 68-79. PubMed Citation: 18992810

Stofanko, M., Kwon, S. Y. and Badenhorst, P. (2010). Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 5(11): e14051. PubMed Citation: 21124962

Stronach, B. E. and Perrimon, N. (2001). Investigation of leading edge formation at the interface of amnioserosa and dorsal ectoderm in the Drosophila embryo. Development 128: 2905-2913. 11532914

Svensson, E. C., et al. (1999). Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc. Natl. Acad. Sci. 96(3): 956-61. PubMed Citation: 9927675

Svensson, E. C., et al. (2000a). A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding fog-2. Nat. Genet. 25(3): 353-6. PubMed Citation: 10888889

Svensson, E. C., et al. (2000b). A functionally conserved N-terminal domain of the Friend of GATA-2 (FOG-2) protein represses GATA4-dependent transcription. J. Biol. Chem. 275(27): 20762-20769. PubMed Citation: 10801815

Tevosian, S. G., et al. (2000). FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101(7): 729-39. PubMed Citation: 10892744

Tevosian, S. G., et al. (2002). Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129: 4627-4634. 12223418

Tokusumi, T., et al. (2007). U-shaped protein domains required for repression of cardiac gene expression in Drosophila. Differentiation 75: 166-174. Medline abstract: 17316386

Tokusumi, Y., Tokusumi, T., Stoller-Conrad, J. and Schulz, R. A. (2010). Serpent, suppressor of hairless and U-shaped are crucial regulators of hedgehog niche expression and prohemocyte maintenance during Drosophila larval hematopoiesis. Development 137(21): 3561-8. PubMed Citation: 20876645

Tomoyasu, Y., Ueno, N. and Nakamura, M. (2000). The Decapentaplegic morphogen gradient regulates the notal wingless expression through induction of pannier and u-shaped in Drosophila, Mech. Dev. 96: 37-49. PubMed Citation: 10940623

Tsang, A. P., et al. (1997). FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90(1): 109-119. PubMed Citation: 9230307

Tsang, A. P., et al. (1998). Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 12(8): 1176-88. PubMed Citation: 9553047

Waltzer, L., et al. (2002). Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. EMBO J. 21: 5477-5486. 12374748

Wang, X., et al. (2002). Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J. 21: 5225-5234. 12356738


u-shaped: Biological Overview | Evolutionary Homologs | Regulation | Developmental Biology | Effects of Mutation

date revised: 25 March 2015 

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.