u-shaped


REGULATION

Transcriptional Regulation

The dorsal ectoderm of the Drosophila embryo is subdivided into different cell types by an activity gradient of two TGFbeta signaling molecules, Decapentaplegic and Screw. Patterning responses to this gradient depend on a secreted inhibitor, Short gastrulation and a newly identified transcriptional repressor, Brinker, which are expressed in neurogenic regions that abut the dorsal ectoderm. The expression of a number of Dpp target genes has been examined in transgenic embryos that contain ectopic stripes of Dpp, Sog and Brk expression. These studies suggest that the Dpp/Scw activity gradient directly specifies at least three distinct thresholds of gene expression in the dorsal ectoderm of gastrulating embryos. Brk was found to repress two target genes, tailup/islet (tup) and pannier, that exhibit different limits of expression within the dorsal ectoderm. These results suggest that the Sog inhibitor and Brk repressor work in concert to establish sharp dorsolateral limits of gene expression. Evidence is provided that the activation of Dpp/Scw target genes depends on the Drosophila homolog of the CBP histone acetyltransferase (Ashe, 2000).

The dpp stripe results in an expansion in both the hnt and ush expression patterns. The broadening of these patterns is particularly evident in anterior regions in the vicinity of the eve stripe. Increases in dpp+ gene dose do not expand the pnr expression pattern. For example, four copies of dpp+ result in augmented levels of pnr expression, but the dorsoventral limits of expression are essentially normal. The stripe2-dpp transgene has no obvious effect on the early sog and brk expression patterns (Ashe, 2000).

Previous studies have identified mutations in the Drosophila homolog of the mammalian CBP histone acetyltransferase gene, nejire. nej is maternally expressed so that the detection of early patterning defects depends on the analysis of embryos derived from females containing nej germline clones. The complete loss of nej+ activity results in a failure to make mature eggs. However, it is possible to obtain embryos from a strong hypomorphic allele, nej1. These embryos exhibit dorsoventral patterning defects. Recent studies have shown that CBP interacts with Smad proteins including the Drosophila protein Mad, a transcription factor downstream of Dpp signaling. In nej mutant embryos, there is a loss of the amnioserosa and other derivatives of the dorsal ectoderm. The expression of target genes requiring peak levels of Dpp signaling is essentially abolished. For example, hnt expression is lost in the presumptive amnioserosa, but persists at the posterior pole where it might be separately regulated by the torso signaling pathway (Ashe, 2000).

There is a similar loss of the dorsal rho pattern in mutant embryos. In contrast, the lateral, neurogenic stripes are unaffected, indicating that the nej mutant does not cause defects in the patterning of the neurogenic ectoderm. Moreover, the fact that the rho stripes are excluded from ventral regions, as seen in wild-type embryos, suggests that the patterning of the mesoderm is also normal. Thus, the nej mutation does not appear to cause a general loss of transcriptional activation, but instead results in specific patterning defects in the dorsal ectoderm. Target genes that are activated by lower levels of Dpp signaling such as ush and pnr are also affected by the nej mutation. In the case of ush, there is a loss of staining in central regions of the dorsal ectoderm. Moreover, the residual staining pattern is narrower than the wild-type pattern. This is reminiscent of the ush pattern seen in dpp/+ heterozygotes. However, the nej mutation also causes a narrowing of the pnr pattern, whereas expression is normal in dpp/+ embryos (Ashe, 2000).

A summary is presented of Dpp signaling thresholds in the embryo. The Dpp/Scw activity gradient presumably leads to a broad nuclear gradient of Mad and Medea across the dorsal ectoderm of early embryos. It is conceivable that the early lateral stripes of brk expression lead to the formation of an opposing Brk repressor gradient through the limited diffusion of the protein in the precellular embryo. Peak levels of Dpp and Scw activity lead to the activation of Race and hnt at the dorsal midline. The tup and ush patterns represent another threshold of gene activity. The similar patterns might involve different mechanisms of Dpp signaling since tup is repressed by Brk, whereas ush is not. Finally, the broad pnr pattern represents another threshold of gene activity. It is not inhibited by Sog but is repressed by Brk. It is possible that tup and pnr are differentially repressed by a Brk gradient. Low levels of Brk might be sufficient to direct the lateral limits of the tup pattern, whereas high levels may be required to repress pnr (Ashe, 2000).

The morphogen gradient of Wingless provides positional information to cells in Drosophila imaginal discs. Elucidating the mechanism that precisely restricts the expression domain of wingless is important in understanding the two-dimensional patterning by secreted proteins in imaginal discs. In the pouch region of the wing disc, wingless is induced at the dorsal/ventral compartment boundary by Notch signaling in a compartment-dependent manner. In the notum region of the wing disc, wingless is also expressed across the dorsal/ventral axis, however, regulation of notal wingless expression is not fully understood. Notal wingless expression is established through the function of Pannier, U-shaped and Wingless signaling itself. Initial wingless induction is regulated by two transcription factors, Pannier and U-shaped. At a later stage, wingless expression expands ventrally from the pannier expression domain by a Wingless signaling-dependent mechanism. Interestingly, expression of pannier and u-shaped is regulated by Decapentaplegic signaling that provides the positional information along the anterior/posterior axis, in a concentration-dependent manner. This suggests that the Decapentaplegic morphogen gradient is utilized not only for anterior/posterior patterning but also contributes to dorsal/ventral patterning through the induction of pannier, u-shaped and wingless during Drosophila notum development (Tomoyasu, 2000).

A hierarchy of the activity of these genes during notum development is presented. dpp is initially induced at the dorsal region of the A/P compartment boundary by Hh signaling. Dpp signaling induces two target genes, pnr and ush. Analyses of pnr expression in put-ts and tkva12 cells suggest that different thresholds are set for the induction of these genes: low levels for pnr and high levels for ush. wg is induced by Pnr where ush is not expressed. Simultaneously, the Pnr-Ush complex represses wg expression at the dorsal-most region of the presumptive notum. In the later stage, the wg expression domain expands ventrally from the pnr expressing region and wg starts to be expressed in the non-pnr-expressing cells. During this process, Wg signaling plays a crucial role and this separation does not occur in the Wg signaling mutants. The Pnr-Ush complex acts as a repressor for the induction of wg and of DC enhancer-lacZ expression (DC enhancer is an enhancer of the achaete-scute proneural gene complex that activates gene expression in the dorsocentral area). It is interesting that Ush does not simply inhibit Pnr function but switches the activator function of Pnr to a repressor function. Based on the result that the extra doses of Pnr cannot revert the repressor activity of Pnr-Ush, it has been proposed that the activator function of Pnr and the repressor function of the Pnr-Ush complex do not simply compete with each other on the notal wg enhancer element. However, it also seems to be possible that Pnr and the Pnr-Ush complex compete for the binding site at the notal wg enhancer, but the ability of Pnr-Ush complex to bind this site may be greater than that of Pnr. It is also worth noting that FOG-1, a mammalian homolog of Ush, represses the transactivation of alpha-globin and EKLF promoter by GATA-1, but enhances the transactivation of NF-E2 p45 promoter by GATA-1 in a culture cell system. Dorsocentral (DC) bristles are ectopically formed but postvertical bristles on the head are missing in a loss-of-function allelic combination for ush or in pnrD1 heterozygous flies. These observations suggest that the Pnr-Ush complex acts as a repressor for the DC enhancer, but acts as an activator for the enhancer of postvertical bristles. Only a cis-regulatory element of the DC enhancer has been analyzed at the nucleotide level. Additional studies of the molecular analyses of the cis-regulatory elements of both wg and DC or other enhancers of the achaete-scute complex seem to be necessary in order to reveal the functions of Pnr and Ush (Tomoyasu, 2000).

Generally, at least two different coordinate axes are necessary for positional specification in a two-dimensional field. Morphogen gradients of Dpp and Wg provide this axial information during Drosophila imaginal disc development. In both wing and leg discs, Dpp is induced at the A/P compartment boundary by Hh signaling. In the leg disc, wg is also induced by Hh signaling. Mutual repression between Dpp and Wg signaling separates each expression territory, localizing dpp in the dorsal and wg in the ventral regions abutting the A/P border (a compartment-independent manner). In contrast, wg is induced by Notch signaling only at the D/V compartment boundary in the wing pouch (a compartment-dependent manner). Then, secreted Dpp and Wg proteins provide positional information along the A/P and D/V axes, respectively, to establish Cartesian-like coordinates in the pouch field. Relative positions of dpp and wg expression domains in the notum are more similar to those in the wing pouch (in both cases, the expression domains are orthogonal). However, a D/V compartment boundary does not exist in the notum. The results described here reveal that another compartment-independent mechanism acts to pattern the presumptive notum. Namely, the D/V axis, provided by Pnr, Ush, and Wg, is initially established by the Dpp gradient, which mainly contributes the positional information along the A/P axis. One of the key issues of this patterning model is that Dpp signaling seems to act preferentially along the A/P axis of the notum. This is because two target genes, pnr and ush, are induced farther from the Dpp source along the A/P axis than along the D/V axis. One possible explanation for this phenomenon is that the diffusion of Dpp protein may be positively regulated along the A/P axis. However, such asymmetric induction is not observed on the dad induction; dad is one of the Dpp signaling targets in the wing disc. This suggests that diffusion of Dpp protein is not directionally regulated in the notum region. An alternative explanation would be that an effective range of Dpp morphogen gradient is established in a relatively short range. Cells that respond to Dpp would proliferate or migrate preferentially along the A/P axis. pnr mRNA is detected mainly in the posterior-dorsal region of the presumptive notum. GFP expression of UAS-gfp pnrmd237 is seen along the entire dorsal side of the presumptive notum. This difference between the staining pattern of pnr mRNA and GFP expression of UAS-gfp pnrmd237 in the late third larval stage seems to be caused by a long half-life of gal4 and/or gfp products, suggesting that cells that once have expressed pnr mRNA proliferate preferentially along the A/P axis. However, it seems to be difficult to explain the determination of pnr and ush expression domains only by the Dpp morphogen gradient. The existence of Tkv*-insensitive cells for inducing pnr and ush indicates that some regional subdivision may occur independently of Dpp signaling. Discontinuous expression of dpp in the A/P border of the notum also suggests the existence of a Dpp-independent subdivision. D/V subdivision of the presumptive notum seems to be achieved by several parallel mechanisms, including Dpp signaling (Tomoyasu, 2000).

Because Drosophila is a holometabolous insect, it should destroy larval tissues and replace them with a different population of cells to form the adult structure during the pupal stage. Thus, formation of epidermal structure should occur reiteratively during embryogenesis and metamorphosis. Patterning of larval epidermal structure takes place during embryogenesis; however, patterning of adult structure is mainly performed in larval stage imaginal discs. The Dpp morphogen gradient has been shown here to regulate pnr and ush expression to pattern the presumptive notum, which forms the dorsal structure of the adult, in the wing imaginal disc. pnr and ush are necessary for the formation of amnioserosa, the dorsal structure of the embryo, and both pnr and ush expressions are also positively regulated by Dpp in a concentration-dependent manner during embryogenesis. Furthermore, dorsal closure during embryogenesis and thorax closure in metamorphosis is also analogous, because both processes are regulated by the same signaling cascade, JNK signaling. These similarities between embryogenesis and metamorphosis presumably reflect the evolutionary history of the development in holometabolous insects (Tomoyasu, 2000).

Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K

How body size is determined is a long-standing question in biology, yet its regulatory mechanisms remain largely unknown. This study finds that a conserved microRNA miR-8 and its target, U-shaped (USH), regulate body size in Drosophila. miR-8 null flies are smaller in size and defective in insulin signaling in fat body that is the fly counterpart of liver and adipose tissue. Fat body-specific expression and clonal analyses reveal that miR-8 activates PI3K, thereby promoting fat cell growth cell-autonomously and enhancing organismal growth non-cell-autonomously. Comparative analyses identify USH and its human homolog, FOG2, as the targets of fly miR-8 and human miR-200, respectively. USH/FOG2 inhibits PI3K activity, suppressing cell growth in both flies and humans. FOG2 directly binds to p85α, the regulatory subunit of PI3K, and interferes with the formation of a PI3K complex. This study identifies two novel regulators of insulin signaling, miR-8/miR-200 and USH/FOG2, and suggests their roles in adolescent growth, aging, and cancer (Hyun, 2009).

Animal body size is a biological parameter subject to considerable stabilizing selection; animals of abnormal size are strongly selected against as less fit for survival. Thus, the way in which body size is determined and regulated is a fundamental biological question. Recent studies using insect model systems have begun to provide some clues by showing that insulin signaling plays an important part in modulating body growth. The binding of insulin (insulin-like peptides in Drosophila) to its receptor (InR) triggers a phosphorylation cascade involving the insulin receptor substrate (IRS; chico in Drosophila), phosphoinositide-3 kinase (PI3K), and Akt/PKB. An active PI3K complex consists of a catalytic subunit (p110; dp110 in Drosophila) and a regulatory subunit (p85α; dp60 in Drosophila). Phosphorylated Akt (p-Akt) phosphorylates many proteins -- including forkhead box O transcription factor (FOXO) -- which are involved in cell death, cell proliferation, metabolism, and life span control. Once activated, the kinase cascade enhances cell growth and proliferation (Hyun, 2009).

Organismal growth is achieved not only by cell-autonomous regulation but also by non-cell-autonomous control through circulating growth hormones. Recent studies in insects indicate that several endocrine organs, such as the prothoracic gland and fat body, govern organismal growth by coordinating developmental and nutritional conditions. However, detailed mechanisms of how body size is determined and modulated remain largely unknown (Hyun, 2009).

microRNAs (miRNAs) are noncoding RNAs of ~22 nt that act as posttranscriptional repressors by base-pairing to the 3' untranslated region (UTR) of their cognate mRNAs. The physiological functions of individual miRNAs remain largely unknown. Studies of miRNA function rely heavily on computational algorithms that predict target genes. In spite of their utility, however, these target prediction programs generate many false-positive results, because regulation in vivo depends on target message availability and complementary sequence accessibility. To overcome the difficulties in identifying real targets, various experimental approaches have been developed, including microarrays, proteomic analyses, and biochemical purification of the miRNA-mRNA complex. Genetic approaches using model organisms can also be useful tools for studying the biological roles of miRNAs at both the organismal and molecular levels. Despite these advances, however, it is still a daunting task to understand the biological function of a given miRNA and to identify its physiologically relevant targets (Hyun, 2009).

This study found using Drosophila as a model system that conserved miRNA miR-8 positively regulates body size by targeting a fly gene called u-shaped (ush) in fat body cells. It was further discovered that this function of miR-8 and USH is conserved in mammals and that the human homolog of USH, FOG2, acts by directly binding to the regulatory subunit of PI3K (Hyun, 2009).

Small body phenotype of the mir-8 mutant
: In a screen for miRNAs that modulate cell proliferation, it was observed that human miR-200 miRNAs (miR-200a, miR-200b, miR-200c, miR-141, and miR-429) promote cell growth when transfected into several human cell lines. Members of the miR-200 family are upregulated in certain cancers, including ovarian cancer, consistent with the observation of the proliferation promoting effects. Because the miR-200 family is highly conserved in bilaterian animals, with miR-8 being the sole homolog in Drosophila, D. melanogaster was used in order to uncover the biological function of the miR-200 family (Hyun, 2009).

The phenotype of the miR-8 null fly was first analyzed using mir-8δ2. It has been shown that mir-8 mutation results in increased apoptosis in the brain and frequent occurrence of malformed legs and wings (in about one-third of the mutants). Interestingly, in addition to these phenotypes, it as found that miR-8 null flies are significantly smaller in size and mass than their wild-type counterparts (Hyun, 2009).

The determination of the final body size in insects during the larval stage is analogous to that which occurs during the human juvenile period. It is generally known that reduced body size in insects is caused by either slow larval growth, precocious early pupariation that shortens the larval growth period, or both. It was observed that, at 100 hr after egg laying (AEL), miR-8 null larvae exhibit a significantly smaller body volume than do wild-type larva. The onset of pupariation in miR-8 null flies was not significantly different from that in wild-type flies, and adult emergence was slightly delayed (~12 hr). Thus, the smaller body size of miR-8 null flies is likely to be caused by slower growth during the larval period rather than by precocious pupariation. Insufficient food intake has been reported to accompany either precocious or delayed pupariation, depending on the onset of reduced feeding. However, the levels of Drosophila insulin-like peptides (Dilps), which are known to be reduced in starvation conditions, were not downregulated in miR-8 null larvae. Given the unaffected onset time of pupariation and the levels of Dilps in this animal, the small body size of miR-8 null flies is unlikely due to reduced feeding (Hyun, 2009).

Next, it was asked whether the small body phenotype was caused by a reduction in cell size, cell number, or both. Cell size and number were measured and it was found that cell number was reduced in the wing in miR-8 null flies, whereas cell size was not significantly different from that of wild-type. Thus, assuming that similar regulation takes place in other body parts, the reduced growth in the peripheral tissues of the miR-8 null flies may be ascribed to decreased cell number rather than reduced cell size (Hyun, 2009).

To understand why miR-8 null animals grow slowly, the activities of the proteins involved in insulin signaling were examined in the miR-8 null flies. The level of activated Akt was measured by Western blotting using a p-Akt-specific antibody. The p-Akt level was reduced in the mutant flies, suggesting that Akt signaling is impaired in the absence of miR-8. Activated p-Akt is known to inactivate FOXO via phosphorylation. Phosphorylation prevents nuclear localization of FOXO, which, in turn, results in the reduction of transcription of FOXO target genes. Consistent with the reduced level of p-Akt, the FOXO target gene, 4EBP, was increased in mir-8 mutant larvae, indicating that insulin signaling is indeed significantly reduced in the miR-8 null animal (Hyun, 2009).

Fat body-specific expression of miR-8 rescues the small body phenotype
The spatial expression pattern of miR-8 was examined in larvae using a mir-8 enhancer trap GAL4 line (hereafter referred to as mir-8 gal4), which, when combined with UAS-GFP, expresses GFP under the control of the mir-8 enhancer. In addition to the signals in the brain, wing discs, and leg discs that were previously observed by Karres, strong signals were noticed in the fat body. The level of miR-8 was determined by Northern blotting using total RNA prepared from different larval organs, which showed that miR-8 is indeed highly abundant in the fat body (Hyun, 2009).

Recent studies suggested that Drosophila fat body may be an important organ in the control of energy metabolism and growth. Therefore, it was reasoned that if miR-8 in the larval fat body is critical for body size control, exclusive expression of miR-8 in the fat body alone should alleviate the whole body size defect observed in the mir-8 mutants. To test this idea, transgenic flies were generated to specifically reintroduce miR-8 into the fat bodies of mir-8 mutant larvae using a fat body-specific GAL4 driver, Cg gal4 (CgG4). Remarkably, miR-8 expression in the fat body alone rescued the phenotype to near wild-type levels in both body weight and body size, suggesting that miR-8 in the fat body is important for systemic body growth. Another interesting observation was that the miRNAs from the human miR-200c cluster, which includes miR-200c and miR-141, could also yield a comparable rescue effect. Human miR-200 family miRNAs, which are located in two chromosomal clusters, have extensive homology to miR-8. The fact that miRNAs of the human miR-200c cluster effectively compensate for the loss of miR-8 suggests that these human miRNAs can be processed by the Drosophila miRNA processing machinery and that they share a conserved biological function. Because CgG4 is expressed in the anterior lymph gland as well as in the fat body, an additional GAL4 driver, ppl gal4 (pplG4), was used that is active mainly in the fat body and slightly in the salivary gland (Zinke, 1999). Similar rescue effects were observed with pplG4, in support of the fat body-specific function of miR-8 (Hyun, 2009).

USH is a critical target of miR-8 in the regulation of body growth
To further understand the molecular function of miR-8, miR-8 target genes responsible for body size control were identified. Because miR-8 is a highly conserved miRNA and because the human homologs promote cell proliferation in human cells, it was assumed that the targets involved in the cell proliferation phenotype may be conserved throughout evolution. To discover such conserved targets,the candidate target genes of both fly miR-8 and human miR-200 miRNAs were listed using five different target prediction programs. The two groups of putative targets, one from flies and the other from humans, were then compared with each other to identify homologous gene pairs. The Drosophila gene u-shaped (ush) and its human homolog Friend of GATA 2 (FOG2, also known as ZFPM2) were the most frequently predicted gene pair conserved in both species. From the target candidate list, 15 genes, including ush/FOG2, were selected that are known as tumor suppressors or negative regulators of cell proliferation in at least one species. These target genes were validated with luciferase reporter plasmids. Briefly, each target's 3' UTR, which contains the miRNA target sites, was inserted downstream of a luciferase gene. The reporter activities were measured following cotransfection of miRNAs and the reporter plasmids into Drosophila S2 or human HeLa cells. After extensive reporter assays, seven gene pairs were identified that respond both to miR-8 and to miR-200 family miRNAs in fly and human cells, respectively (Hyun, 2009).

To examine which targets among the candidates are physiologically relevant to the phenotype observed, the candidate genes were knocked down in the fat body of miR-8 null flies and it was asked whether the knockdown could rescue the small body phenotype. Using the UAS-RNA interference (RNAi) lines obtained from the Vienna RNAi Library Centre, dsRNAs of five candidate genes were expressed in the fat body of mir-8 mutants using CgG4. Lap1 knockdown was unsuccessful and, thus, did not rescue the mir-8 mutant phenotype. Among the RNAi lines tested, the one against ush rescued the dwarf phenotype most dramatically. RNAi of ush in wild-type background did not significantly increase body weight, ruling out the possibility that the effects of ush knockdown and mir-8 mutation are additive (Hyun, 2009).

Because a previous study showed that miR-8 targets atrophin (atro) to prevent neurodegeneration, whether atro is also involved in body size regulation was tested. Knockdown of atro in the fat body, however, failed to rescue the small body phenotype of miR-8 null flies. Thus, the reported function of miR-8 in the prevention of neurodegeneration may be separate from its function in body growth, not only spatially but also at the molecular level. To exclude possible off-target effects of ush RNAi, the ush1513 hypomorph, which expresses a reduced level of ush as the result of a mutation in the promoter region, was used. Consistent with the results of the ush RNAi, ush1513 heterozygotes have larger adult bodies than do the control flies. This result indicates that USH may indeed suppress body growth (Hyun, 2009).

Next, whether the level of USH was elevated in miR-8 null animals was examined. The endogenous ush mRNA level was determined by qRT-PCR analysis of the RNAs from whole larva or larval fat body. The ush mRNA is, indeed, significantly upregulated in the fat body of miR-8 null larvae (δ2.0 fold), suggesting that miR-8 suppresses ush in the fat body. Upregulation of ush mRNA in whole larval RNA was less prominent (~1.3 fold). Thus, ush may be more strongly suppressed in the fat body than in other body parts. Notably, USH protein levels are more dramatically affected than the mRNA levels, indicating that miR-8 represses USH production by both mRNA destabilization and translational inhibition. Furthermore, a point mutation of the miR-8 target site in the 3' UTR of ush abolished the suppression of the 3' UTR reporter, indicating that the suppression is mediated through the direct binding of miR-8 to the predicted target site. Putative target sites for miR-8 are found in all Drosophila species examined, including distant species such as D. virilis and D. grimshawi. Together, these results demonstrate that ush is an authentic target of miR-8 (Hyun, 2009).

miR-8 and USH regulate PI3K
Several reports have suggested that insulin signaling in the larval fat body controls organismal growth in a non-cell-autonomous manner. In support of this idea, it was observed that suppression of insulin signaling in the larval fat body yielded smaller flies and fewer cells in the wing. This phenotype is similar to that of miR-8 null flies. To further investigate whether insulin signaling is indeed defective in the fat body of miR-8 null animals, the tGPH reporter, a GFP protein fused to a PH domain, was used. Using this technique, the activity of PI3K can be measured by monitoring the membrane-associated GFP signal, because PH domains bind to the membrane-anchored phosphatidylinositol-3,4,5-triphosphate (PIP3) produced by PI3K. It was found that PI3K activity was downregulated in mir-8 mutant fat bodies and that FOXO was more strongly localized to the nucleus of mutant fat bodies than the controls. Moreover, the level of p-Akt was significantly reduced in the fat body, whereas the phosphorylated JNK level did not change. Thus, insulin signaling is specifically disrupted in the fat bodies of miR-8 null larvae (Hyun, 2009).

To more precisely analyze miR-8's function in fat cells, flip-out GAL4 overexpressing clones of miR-8 were generated in the fat body of mir-8 heterozygote. In the mosaic fat cells overexpressing miR-8, the tGPH signals was augmented in the membrane, indicating that miR-8 promotes PI3K activity in a cell-autonomous manner. Cell size also increased with miR-8 overexpression (Hyun, 2009).

Next mitotic null clones were generated to observe the loss of function phenotype. Cells of the miR-8 null clone were smaller than the adjacent cells in the twin spot -- the cells harboring wild-type copies of miR-8. This suggests that miR-8 promotes fat cell growth in a cell-autonomous manner, as expected if miR-8 enhances insulin signaling in the fat body. Fewer (or no) null clone cells were often observed next to the twin spot cells when the mitotic clones were induced at embryonic stage or newly hatched larval stage. This suggests the frequent failure of proliferation and survival of miR-8 null cells during larval development. It is noted that null clones of miR-8 were generated in the wing or eye disc but little growth defect was found in these organs. Therefore, the effect of miR-8 on cell growth is dependent on tissue type, which may be explained by the fact that USH is present in the fat body but not in wing precursor cells or the eye disc (Hyun, 2009).

To determine whether USH negatively regulates insulin signaling, mosaic clones of fat cells overexpressing USH were generated. USH-overexpressing cells were smaller in size and showed significantly lower tGPH signals in the membrane and higher FOXO signals in the nucleus than did the neighboring wild-type cells. Also mosaic fat cells expressing dsRNA against ush were created to observe the knockdown phenotype. The tGPH signal was significantly enhanced in the mosaic cells depleted of USH. In mosaic ush mutant cells, the nuclear FOXO signals decreased. Together, these observations indicate that USH inhibits insulin signaling upstream of or in parallel with PI3K in a cell-autonomous manner (Hyun, 2009).

Whether reduced insulin signaling caused by the absence of miR-8 could be rescued by knockdown of USH was further examined. Excessive insulin signaling is known to reduce the levels of insulin receptor (Inr) and cytohesin Steppke (step) through negative feedback by FOXO. These two targets of FOXO were upregulated in the fat body of miR-8 null larvae, whereas reintroduction of miR-8 dramatically reduced their expression. Notably, ush RNAi also restores the mRNA levels of the FOXO target genes Inr and step in mir-8 mutant fat bodies. Thus, the defect of insulin signaling in the fat body of miR-8 null larvae is at least partially attributable to elevated ush levels (Hyun, 2009).

FOG2 directly binds to p85α to inhibit PI3K
Although FOG2 is thought to be a nuclear transcriptional coregulator, several studies have reported that FOG2 also localizes to the cytoplasm. To confirm this finding, subcellular fractionation and Western blotting were performed. FOG2 was, in fact, observed predominantly in the cytoplasm rather than in the nucleus in HeLa and PANC1 cells. Immunostaining also showed cytoplasmic localization of FOG2 in HepG2 cells, suggesting a cytoplasmic role of FOG2 (Hyun, 2009).

Given that FOG2 suppresses PI3K and colocalizes with p85α, it is suspected that FOG2 may interact with PI3K. Notably, a significant amount of p85α, the regulatory subunit of PI3K, was coprecipitated with anti-FOG2 antibody. Interaction between FOG2 and p85α was also observed when the FOG2 was ectopically expressed in a FLAG-tagged form (Hyun, 2009).

To map the interaction domain of FOG2, several truncated mutants of FOG2 were generated. The mutants containing a FLAG-tag in the N termini were coexpressed with V5-tagged p85α and were analyzed by immunoprecipitation using anti-FLAG antibody. The results indicate that the middle region of FOG2 (507-789 aa) mediates the interaction with p85α. It was then asked whether the middle region is sufficient to inhibit PI3K activity when it is ectopically expressed in HepG2 cells. The middle region suppressed PI3K, whereas neither the N-terminal part nor the C-terminal part had a significant effect on PI3K activity (Hyun, 2009).

To test whether FOG2 binds to p85α directly, the FOG2 protein was expressed and purified from bacteria and was used in an in vitro binding assay, along with purified recombinant p85α protein fused to GST. The recombinant FOG2 protein containing the middle region of FOG2 (413-789 aa) specifically bound to recombinant p85α (Hyun, 2009).

Finally, it was asked whether FOG2 can directly inhibit p85α by performing an in vitro PI3K assay using recombinant FOG2. Addition of the recombinant FOG2 protein containing the middle region (FOG2[413-789]) to the immunoprecipitated PI3K complex significantly inhibited the PI3K activity. This finding suggests that direct binding of FOG2 to p85α leads to the inhibition of PI3K activity. Notably, it was also found that Drosophila USH physically interacts with Drosophila p60 (dp60, the fly ortholog of p85α) when dp60 is coexpressed with USH in human HEK293T cells. Therefore, the action mechanism of USH/FOG2 may be conserved across the phyla (Hyun, 2009).

This study has revealed two novel regulatory components of insulin signaling: miR-8/miR-200 and USH/FOG2. miR-8/200 negatively regulates USH/FOG2 through direct base-pairing to the 3' UTR of the ush/FOG2 mRNA. USH/FOG2, in turn, inhibits the formation of an active PI3K complex via direct interaction with dp60/p85α, the regulatory subunit of PI3K. In fly fat bodies, miR-8 suppresses ush, which causes cell-autonomous increase of fat cell growth. The roles of miR-8 and USH are conserved in mammals; miR-200 miRNAs target FOG2 to upregulate insulin signaling and cell proliferation in human cells. Given that the PI3K-Akt-FOXO pathway plays central roles in many developmental processes and that defects of this pathway have been associated with cancer, diabetes, neuropathology, and aging, further investigation of the miR-8/200 family and USH/FOG2 may contribute to the understanding and amelioration of such human diseases (Hyun, 2009).

In Drosophila, miR-8 posttranscriptionally represses USH, thereby activating insulin signaling, which results in cell-autonomous growth of fat body cells. This process also causes nonautonomous organismal growth, likely through the induction of humoral factors. In human liver cells, miR-200 posttranscriptionally represses FOG2, which directly binds to p85α and blocks the formation of an active PI3K complex. As such, the repression of FOG2 by miR-200 stimulates insulin signaling and cell proliferation (Hyun, 2009).

The results support and extend the emerging theory that the fat body is a central organ coordinating metabolic condition and global growth of the organism. It is proposed that miR-8 regulates the growth of peripheral tissues in a non-cell-autonomous manner by modulating the secretion of the humoral factors that are under the control of insulin signaling (see A model for the functions of miR-8/miR-200 and USH/FOG2). Future investigation is needed to identify the humoral factors that mediate the communication between the fat body and other tissues. Because the larval fat body is considered the Drosophila counterpart of mammalian liver and adipose tissues, it will be interesting to study whether miR-200 and FOG2 play a similar role in liver and adipose tissues to control body growth during the human juvenile period (Hyun, 2009).

Previous studies suggest that USH/FOG2 may function as either transcriptional coactivators or corepressors by partnering with various GATA transcription factors. However, FOG2 is localized to the cytoplasm in some tissues. FOG1, the other human homolog of Drosophila USH, was also reported to remain in the cytoplasm of skin stem cells that lack GATA-3 and was shown to be sequestered in the cytoplasm by a cytoplasmic protein TACC3. USH/FOG2 have been studied mainly in hematopoiesis and heart development in both flies and mammals. However, it was recently shown that USH suppresses cell proliferation in Drosophila hemocytes. It is also noteworthy that FOG2 is frequently downregulated in human cancers of the thyroid, lung, and prostate, which suggests a role of FOG2 as a tumor suppressor. This study is the first report that FOG2 acts as a negative modulator of the PI3K-Akt pathway via direct binding to p85α. It remains to be determined whether the newly discovered molecular function of USH/FOG2 is related to the previously described phenotypes of ush/FOG2 (Hyun, 2009).

This study also offers a comprehensive way of discovering the physiological function of conserved miRNAs. By systematically mapping the protein homologs of miRNA targets and by validating them experimentally, seven gene pairs were identified as conserved targets of the miR-8/200 family. Also fly genetics and human cell biology were used to identify ush/FOG2 as the target gene that is responsible for one particular phenotype. Of note, six other genes (Lap1/ERBB2IP, CG8445/BAP1, dbo/KLHL20, Lar/PTPRD, Ced-12/ELMO2, and CG12333/WDR37) may also be authentic targets of miR-8/200, although they need to be further verified by additional methods. These six genes may function in different organs and/or at different developmental stages. It has been reported that miR-8 prevents neurodegeneration by targeting atro. This study observed that atro knockdown does not rescue the small body phenotype of mir-8 mutants and that ush knockdown cannot reverse the wing and leg defects attributed to atro. Thus, a single miRNA may have several distinct functions in different cell types, likely depending on the availability of specific targets or downstream effectors. In a recent study, miR-8 gain of function was shown to affect the WNT pathway, although this finding was not sufficiently supported by the phenotype resulting from miR-8 loss of function. The miR-200 family has also been shown to interfere with epithelial to mesenchymal transitions in humans to enhance cancer cell colonization in distant tissues and to regulate olfactory neurogenesis and osmotic stress in zebrafish. It remains to be determined whether these previously described functions of the miR-8/200 microRNAs are systemically interconnected in a single organism and how widely each of these functions is conserved among animals expressing miR-8/200 microRNAs (Hyun, 2009).

Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila

Body size determination is a process that is tightly linked with developmental maturation. Ecdysone, an insect maturation hormone, contributes to this process by antagonizing insulin signaling and thereby suppressing juvenile growth. This study reports that the microRNA miR-8 and its target, u-shaped (USH), a conserved microRNA/target axis that regulates insulin signaling, are critical for ecdysone-induced body size determination in Drosophila. The miR-8 level is reduced in response to ecdysone, while the USH level is up-regulated reciprocally, and miR-8 is transcriptionally repressed by ecdysone's early response genes. Furthermore, modulating the miR-8 level correlatively changes the fly body size; either overexpression or deletion of miR-8 abrogates ecdysone-induced growth control. Consistently, perturbation of USH impedes ecdysone's effect on body growth. Thus, miR-8 acts as a molecular rheostat that tunes organismal growth in response to a developmental maturation signal (Jin, 2012).

This study reveals the mechanism by which ecdysone suppresses insulin signaling and thereby decelerates larval growth. During larval development, ecdysone regulates the levels of miR-8 and its target, USH, a PI3 kinase inhibitor, through the EcR downstream pathway, and quantitative regulation of miR-8 by ecdysone leads to determining the final fly size. Since the ecdysone level is low during the larval stage not engaged in the molting process, a mild response of miR-8 increase by EcR inhibition in this stage would be expected. Notably, however, it was found that this increase in miR-8 level by EcRDN is constantly sustained throughout the third instar larval stage, which is the period of exponential growth. Interestingly, among early response genes of EcR signaling, E74 and BR-C are also persistently expressed during this period; these gene products repress miR-8 expression at the transcriptional level. Thus, throughout the third instar larval period, EcR downstream signaling keeps miR-8 (and, concomitantly, insulin signaling) under control. Because the duration of this regulation lasts several days, the effect of miR-8 modulation accumulates and manifests a significant impact on final body size. This cumulative effect accounts for the effect of ecdysone signaling on body size despite only modest changes in the miR-8 level. When EcR signaling was hampered throughout the larval stage, leading to a sustained increase of miR-8, the final body size became noticeably bigger (Jin, 2012).

This function of miR-8 in shaping body size provides a novel example in which an animal uses the inherent ability of miRNAs in fine-tuning target gene expression. Previously, several studies have shown that such a strategy has been used with miRNAs in diverse biological contexts. Specific examples include maintaining the optimal level of miRNA target proteins, which is critical for organismal survival, and setting the thresholds of target gene activity to prevent inappropriate development. The current data show the application of this type of strategy in a continuous process of organismal growth. By tuning the activity of insulin signaling, miRNAs could regulate organismal growth and ensure the attainment of appropriate body size. It is currently unclear whether similar regulatory mechanisms exist in other organisms. However, in humans and rodents, the miR-200 family of miRNAs are predominantly expressed in organs such as the pituitary, thyroid, testes, ovary, and breast, most of which are major target organs of steroid hormones. Moreover, the miR-200 family of miRNAs are significantly down-regulated by the estrogen hormone in breast cancer cells and uterus tissues, suggesting that the miR-200 family may also be controlled by steroids in mammals. It would be interesting to investigate whether a comparable regulatory axis of steroid hormone/miR-200/insulin signaling is conserved through metazoan evolution (Jin, 2012).

Targets of Activity

The pattern of the large sensory bristles on the notum of Drosophila arises as a consequence of the expression of the achaete and scute genes. U-shaped acts as a transregulator of achaete and scute in the dorsal region of the notum. Viable hypomorphic u-shaped mutants display additional dorsocentral and scutellar bristles that result from overexpression of achaete and scute. A synergism between ac-sc and ush has been observed: animals heterozygous for both a deletion of ush and a deletion of the Achaete-Scute complex lack the posterior vertical bristles on the head. ac-sc mutants are epistatic over ush for the bristle phenotype: in the absence of ac-sc function, no sensory organs develop, even in ush flies. This indicates that Ush functions upstream of Ac and Sc. The additional macrochaetes seen in ush mutants may therefore be attributable to overexpression of ac and sc. Overexpression of u-shaped causes a loss of achaete-scute expression and consequently a loss of dorsocentral bristles (Cubadda, 1997).

The effects of u-shaped on the dorsocentral bristles appear to be mediated through the enhancer sequences that regulate achaete and scute at this site. The dorsocentral proneural cluster of ac-sc expression is known to depend on enhancer sequences, as for example, the dorso-central (DC) enhancer, located 4.0-9.8 kb upstream of the ac start site (Cubadda, 1997). The effects on u-shaped mutants are similar to those of a class of dominant alleles of the gene pannier with which they display allele-specific interactions, suggesting that the products of both genes cooperate in the regulation of achaete and scute. A study of the sites at which the dorsocentral bristles arise in mosaic u-shaped nota, suggests that the levels of the u-shaped protein are crucial for the precise positioning of the precursors of these bristles (Cubadda, 1997).

On each half of the dorsal mesothorax (heminotum), 11 large bristles (macrochaetae) occupy precisely constant positions. The location of each macrochaeta is specified during the third instar larval and early pupal stages by the emergence of its precursor cell (sensory mother cell: SMC) at a precise position in the imaginal wing discs, the precursors of the epidermis of most of the mesothorax and wings. The accurate positioning of SMCs is thought to be the culmination of a multistep process in which positional information is gradually refined. The GATA family transcription factor Pannier and the Wnt secreted protein Wingless are known to be important for the patterning of the notum. Thus, both proteins are necessary for the development of the dorsocentral mechanosensory bristles. Pannier has been shown to directly activate the proneural genes achaete and scute by binding to the enhancer responsible for the expression of these genes in the dorsocentral proneural cluster. Moreover, the boundary of the expression domain of Pannier appears to delimit the proneural cluster laterally, while antagonism of Pannier function by U-shaped, a Zn-finger protein, sets its limit dorsally. Therefore, Pannier and U-shaped provide positional information for the patterning of the dorsocentral cluster. In contrast and contrary to previous suggestions, Wingless does not play a similar role, since the levels and vectorial orientation of its concentration gradient in the dorsocentral area can be greatly modified without affecting the position of the dorsocentral cluster. Thus, Wingless has only a permissive role on dorsocentral achaete-scute expression. Evidence is provided indicating that Pannier and U-shaped are main effectors of the regulation of wingless expression in the presumptive notum (Garcia-Garcia, 1999).

An enhancer that directs expression specifically at the DC proneural cluster is present within a 5.7 kb fragment of AS-C DNA. Different subfragments were assayed for enhancer activity in vivo. A 1.4 kb subfragment (AS1.4DC) directs lacZ transcription from a minimal hsp70 promoter in the DC proneural cluster: beta-galactosidase and Scute endogenous accumulations precisely colocalized at this cluster. This fragment and the corresponding region of the AS-C from D. virilis were sequenced. Stretches of conserved DNA were present throughout the fragment, although they appeared to cluster within three regions. Subfragments containing each one of these regions were assayed for DC enhancer activity. Only the most 3' subfragment (PB0.5DC) shows such an activity, but to a much lesser extent than AS1.4DC. Interestingly, the activity is usually limited to only one cell, which is the posterior DC SMC. However, when assayed with the sc promoter, the PB0.5DC fragment directs lacZ activity in most cells of the DC cluster. Consequently, the sequences essential for specifying transcription in the DC cluster are contained within the PB0.5DC subfragment, although additional sequences that reinforce this expression are present in the larger AS1.4DC fragment. The AS1.4DC fragment was used to study DC enhancer activity (Garcia-Garcia, 1999).

The Pnr protein is known to regulate ac-sc expression at the DC cluster by acting directly or indirectly through the DC enhancer. The sequence of AS1.4DC was examined: within it, seven putative GATA-1 factor binding sites were found. Three of them fit the vertebrate consensus sequence (WGATAR: sites 1, 2 and 4); three comply with the consensus obtained in a random oligonucleotide selection experiment performed with Pnr protein (GATAAG: sites 3, 5 and 6), and one fits both consensus sequences (site 7). In the prospective notum, the stripe of diffusible Wg protein straddles the lateral border of the domain of expression of pnr. This is compatible with the location of the Wg source being on the border of, but still within, the pnr domain. In accordance with this location, pnr appears to activate wg, since it has been found that a wg-lacZ construct, which reproduces the notal band of Wg accumulation, is not expressed in pnr mutant discs and is ectopically expressed in the dorsalmost area of the disc in a pnr dominant gain-of-function combination. In contrast, other data suggest that Pnr represses wg. Thus, the notal wg stripe is expanded dorsally in strong hypomorphic pnr combinations. Moreover, in flies in which pnr is overexpressed there was no expansion of the domain of WG mRNA, which in fact accumulates in a stripe that is even narrower than that seen in the wild type. The repressing effects appeared to be restricted to the domain of accumulation of Ush, which suggests the participation of Pnr/Ush heterodimers in the repression. Consistent with this assumption, the PnrD1 mutant protein, which is incapable of interacting with Ush, promotes wg expression within the entire dorsalmost area of the disc in pnr mutants animals. Interestingly, Pnr D1 can not induce the expansion of the wg expression domain in the presence of wild-type Pnr, suggesting that Pnr+/Ush heterodimers interfere with the Ush-resistant function of PnrD1. Such interference may also account for the repression of the PnrD1-mediated dorsal expansion of DC-lacZ expression by Pnr+. Taken together, these results suggest that during development of the wing disc, Pnr is necessary both for activation of wg and (together with Ush) for its repression in the dorsalmost region of the presumptive notum. This dorsal repression probably takes place from the start of wg expression, since the earliest detectable accumulation of WG mRNA is already restricted to the presumptive mid notal region. A wg-lacZ enhancer trap line, which shows expression throughout the dorsalmost part of the early third instar wing discs and posterior refinement to the notal stripe, might have a reduced sensitivity to the repression by Pnr/Ush (Garcia-Garcia, 1999).

A model is provided for the dorsal-lateral patterning of the DC area by Pnr and Ush. In the third instar wing disc and in the dorsalmost part of the prospective notum, Ush is present at high concentrations and the Pnr/Ush heterodimers are relatively abundant. These heterodimers would act as repressors and prevent activation of downstream genes. In the DC area, defined along the dorso-lateral axis by lower concentrations of Ush and the presence of Pnr, there is sufficient free Pnr to activate genes like ac-sc, DC-lacZ and wg. ac-sc is transcribed in the more dorsal part of the area because its activation requires relatively high concentrations of Pnr. wg is only transcribed at the edge of the Pnr domain because its expression is very sensitive to both Pnr and Pnr/Ush, and consequently low concentrations of the former are sufficient for activation and low concentrations of the latter, even in the presence of high concentrations of free Pnr, impose repression. The inability of extra doses of the activator Pnr to revert the repression by Pnr/Ush in the dorsalmost region of the notum suggests that activator and repressor do not compete for overlapping sites at the DC as-sc and notal wg enhancers. The presence of Pnr/Ush at their site(s) would block the activating effect of bound Pnr. Additional inputs, notably decapentaplegic, are known to act on the DC enhancer (Garcia-Garcia, 1999).

In Drosophila, muscles attach to epidermal tendon cells are specified by the gene stripe (sr). Flight muscle attachment sites are prefigured on the wing imaginal disc by sr expression in discrete domains. The mechanisms underlying the specification of these domains of sr expression have been examined. The concerted activities of the wingless (wg), decapentaplegic (dpp) and Notch (N) signaling pathways, and the prepattern genes pannier (pnr) and u-shaped (ush) establish domains of sr expression. N is required for initiation of sr expression. pnr is a positive regulator of sr, and is inhibited by ush in this function. The Wg signal differentially influences the formation of different sr domains. These results identify the multiple regulatory elements involved in the positioning of Drosophila flight muscle attachment sites (Ghazi, 2003).

Pnr, a GATA-binding protein normally functions as a transcriptional activator and is antagonized by Ush in its function. Loss of function pnr mutants show no sr expression in the domain covered by pnr. This, along with sr expansion in mutants of ush, would suggest that pnr activates sr in the notum, and is inhibited by ush. However, there is also loss of sr expression in pnr `gain of function' mutants. The reason for this is not completely clear. One possibility is that since the mutation causes an increase in wg activity in the region this may cause a down-regulation of sr. This is supported by a similar effect seen on misexpression of activated armadillo in the pnr domain. Results with both pnr and ush have been taken into account to suggest that pnr positively regulates sr and is antagonized by ush (Ghazi, 2003).

These results indicate that each sr domain is regulated by a combination of prepattern genes and signaling molecules. But, a precise description of the 'combinatorial code' for regulation of each sr domain is beyond the scope of this work and can be achieved by generation of domain specific markers for sr. Based on expression pattern data, and existing literature, it is suggested that high levels of Pnr, low (or absence of) Ush and moderate levels of Wg determine the initial induction of domain a. The distinction between medial (a) and lateral (b-d) domains is established by the presence of very high levels of Wg (the cells where the Wg gradient originates). Lateral expression domains are probably induced in domains controlled by the lateral prepattern gene iro. The differences between different lateral domains arise as a result of expression of different genes in the region. For instance, the lateral-most domain d appears to be regulated by ush and does not encounter Wg at all. Whereas, all cells of b receive uniformly moderate levels of Wg, only cells at the borders of c receive high Wg levels, and these differences result in the distinct identities of the two domains. Dpp, either through its effects on these regulatory genes and/or through direct effects on sr influences the process (Ghazi, 2003).

Serpent, suppressor of hairless and U-shaped are crucial regulators of hedgehog niche expression and prohemocyte maintenance during Drosophila larval hematopoiesis

The lymph gland is a specialized organ for hematopoiesis, utilized during larval development in Drosophila. This tissue is composed of distinct cellular domains populated by blood cell progenitors (the medullary zone), niche cells that regulate the choice between progenitor quiescence and hemocyte differentiation [the posterior signaling center (PSC)], and mature blood cells of distinct lineages (the cortical zone). Cells of the PSC express the Hedgehog (Hh) signaling molecule, which instructs cells within the neighboring medullary zone to maintain a hematopoietic precursor state while preventing hemocyte differentiation. As a means to understand the regulatory mechanisms controlling Hh production, a PSC-active transcriptional enhancer was characterized that drives hh expression in supportive niche cells. The findings indicate that a combination of positive and negative transcriptional inputs program the precise PSC expression of the instructive Hh signal. The GATA factor Serpent (Srp) is essential for hh activation in niche cells, whereas the Suppressor of Hairless [Su(H)] and U-shaped (Ush) transcriptional regulators prevent hh expression in blood cell progenitors and differentiated hemocytes. Furthermore, Srp function is required for the proper differentiation of niche cells. Phenotypic analyses also indicated that the normal activity of all three transcriptional regulators is essential for maintaining the progenitor population and preventing premature hemocyte differentiation. Together, these studies provide mechanistic insights into hh transcriptional regulation in hematopoietic progenitor niche cells, and demonstrate the requirement of the Srp, Su(H) and Ush proteins in the control of niche cell differentiation and blood cell precursor maintenance (Tokusumi, 2010).

The lymph gland hematopoietic organ is formed near the end of embryogenesis from two clusters of cells derived from anterior cardiogenic mesoderm (Crozatier, 2004; Mandal, 2004). About 20 pairs of hemangioblast-like cells give rise to three distinct lineages that will form the lymph glands and anterior part of the dorsal vessel. Notch (N) pathway signaling serves as the genetic switch that differentially programs these progenitors towards cell fates that generate the lymph glands (blood lineage), heart tube (vascular lineage), or heart tube-associated pericardial cells (nephrocytic lineage). An essential requirement has also been proven for Tailup (Islet1) in lymph gland formation, in which it functions as an early-acting regulator of serpent, odd-skipped and Hand hematopoietic transcription factor gene expression (Tokusumi, 2010).

By the end of the third larval instar, each anterior lymph gland is composed of three morphologically and molecularly distinct regions (Jung, 2005). The posterior signaling center (PSC) is a cellular domain formed during late embryogenesis due to the specification function of the homeotic gene Antennapedia (Antp) (Mandal, 2007) and the maintenance function of Collier, the Drosophila ortholog of the vertebrate transcription factor early B-cell factor. PSC cells selectively express the Hedgehog (Hh) and Serrate (Ser) signaling molecules and extend numerous thin filopodia into the neighboring medullary zone. This latter lymph gland domain is populated by undifferentiated and slowly proliferating blood cell progenitors (Mandal, 2007). Prohemocytes within the medullary zone express the Hh receptor Patched (Ptc) and the Hh pathway transcriptional effector Cubitus interruptus (Ci). Medullary zone cells also express components of the Jak/Stat signaling pathway. By contrast, the third lymph gland domain -- the cortical zone -- solely contains differentiating and mature hemocytes, such as plasmatocytes and crystal cells. Upon wasp parasitization, or in certain altered genetic backgrounds, lamellocytes will also appear in the cortical zone as a third type of differentiated hemocyte (Tokusumi, 2010).

Two independent studies have provided compelling data to support the contention that the PSC functions as a hematopoietic progenitor niche within the lymph gland, with this cellular domain being essential for maintaining normal hemocyte homeostasis (Krzemien, 2007; Mandal, 2007). These investigations showed that communication between the PSC and prohemocytes present in the medullary zone is crucial for the preservation of the progenitor population and to prevent these cells from becoming abnormally programmed to differentiate into mature hemocytes. Seminal findings from these studies can be summarized as follows: Col expression must be restricted to the PSC by the localized expression of Ser; Hh must be expressed selectively in the PSC, coupled with the non-autonomous activation of the Hh signaling pathway in prohemocytes of the medullary zone; and the PSC triggers activation of the Jak/Stat pathway within cells of the medullary zone. With the perturbation of any of these molecular events, the precursor population of the medullary zone is lost owing to the premature differentiation of hemocytes, which swell the cortical zone. Although the exact interrelationship of Ser, Hh and Jak/Stat signaling within the lymph gland is currently unknown, the cytoplasmic extensions emanating from PSC cells might facilitate instructive signaling between these niche cells and hematopoietic progenitors present in the medullary zone (Krzemien, 2007; Mandal, 2007). A more recent study showed that components of the Wingless (Wg) signaling pathway are expressed in the stem-like prohemocytes to reciprocally regulate the proliferation and maintenance of cells within the supportive PSC niche (Sinenko, 2009). The cellular organization and molecular signaling of the Drosophila lymph gland are remarkably similar to those of the hematopoietic stem cell niches of vertebrate animals, including several mammals (Tokusumi, 2010 and references therein).

Through detailed molecular and gene expression analyses this study has identified the PSC-active transcriptional enhancer within hh intron 1 and delimited its location to a minimal 190 bp region. The hh enhancer-GFP transgene faithfully recapitulates the niche cell expression of Hh derived from the endogenous gene, as double-labeling experiments with the GFP marker and Antp or Hh show a clear co-expression in PSC domain cells. Appropriately, GFP expression is not detected in Antp loss-of-function or TCFDN genetic backgrounds, which culminate in an absence of niche cells from the lymph gland. The hematopoietic GATA factor Srp serves as a positive activator of hh PSC expression, as mutation of two evolutionarily conserved GATA elements in the enhancer abrogates its function and Srp functional knockdown via srp RNAi results in hh enhancer-GFP transgene inactivity and the absence of Hh protein expression. An additional intriguing phenotype was observed in lymph glands expressing the srp RNAi transgene, that being a strong reduction in the number of filopodial extensions emerging from cells of the PSC. This phenotype suggests a functional role for Srp in the correct differentiation of niche cells, via a requirement for normal Hh presentation from these cells and/or the transcriptional regulation by Srp of additional genes needed for the formation of filopodia (Tokusumi, 2010).

As Srp accumulates in all cells of the lymph gland, a question arose as to how hh expression is restricted to cells of the PSC. This paradox could be explained by a mechanism in which hh expression is also under some means of negative transcriptional control in non-PSC cells of the lymph gland. This possibility proved to be correct, with the analyses identifying two negative regulators of hh lymph gland expression. The first is Su(H). Mutation of the evolutionarily conserved GTGGGAA element, a predicted recognition sequence for this transcriptional repressor, resulted in an expanded activity of the hh PSC enhancer-GFP transgene; that is, the de novo appearance of GFP was observed in prohemocytes of the medullary zone. Likewise, ectopic medullary zone expression of the wild-type PSC enhancer-GFP transgene and of Hh protein was seen in lymph glands mutant for Su(H). These findings, coupled with the detection of Su(H) in blood cell progenitors, strongly implicate this factor as a transcriptional repressor of the hh PSC enhancer, restricting its expression to niche cells (Tokusumi, 2010).

Additional studies identified Ush as a second negative regulator of hh expression. Ush is expressed in most cells of the lymph gland, with the exception of those cells resident within the PSC domain. Previous research demonstrated that ush expression in the lymph gland is under the positive control of both Srp. Why Ush protein fails to be expressed in the PSC remains to be determined. Forced expression of ush in niche cells resulted in inactivation of the hh PSC enhancer and reduced the formation of filopodia. It was hypothesized that Ush might be forming an inhibitory complex with the SrpNC protein, changing Srp from a positive transcriptional activator to a negative regulator of hh lymph gland expression. Such a mechanism has been demonstrated previously in the negative regulation by Ush of crystal cell lineage commitment. The expansion of wild-type hh enhancer-GFP transgene and Hh protein expression to prohemocytes within the medullary zone and to differentiated hemocytes within the cortical zone in lymph glands mutant for ush is also supportive of Ush functioning as a negative regulator of hh expression (Tokusumi, 2010).

Bringing these results together, a model can be proposed for the regulatory events that culminate in the precise expression of the vital Hh signaling molecule in niche cells. Srp is a direct transcriptional activator of hh in the lymph gland and Hh protein is detected in niche cells due to this activity. hh expression is inhibited in prohemocytes of the medullary zone by Su(H) action, while a repressive SrpNC-Ush transcriptional complex prevents Srp from activating hh expression in prohemocytes and in differentiated hemocytes of the medullary zone and cortical zone. Together, these positive and negative modes of regulation would allow for the niche cell-specific expression of Hh and facilitate the localized presentation of this crucial signaling molecule to neighboring hematopoietic progenitors (Tokusumi, 2010).

The identification of Srp and Su(H) as key regulators of Hh expression in the larval hematopoietic organ prompted an investigation into the functional requirement of these proteins in the control of blood cell homeostasis. Since Srp knockdown by RNAi leads to an absence of the crucial Hh signal, it was not surprising to find that normal Srp function is required for prohemocyte maintenance and the control of hemocyte differentiation within the lymph gland; that is, a severe reduction of Ptc-positive hematopoietic progenitors and a strong increase in differentiated plasmatocytes and crystal cells was observed in srp mutant tissue (Tokusumi, 2010).

Likewise, Ptc-positive prohemocytes were lost and large numbers of plasmatocytes were prematurely formed in Su(H) mutant lymph glands. This disruption of prohemocyte maintenance occurred even though Hh protein expression was expanded throughout the medullary zone. This raised the question as to why expanded Hh protein and possible Hh pathway activation did not increase the progenitor population in Su(H) mutant lymph glands, instead of the observed loss of prohemocytes and appearance of differentiated plasmatocytes. One explanation might be that the PSC niche is not expanded in Su(H) mutant lymph glands and Hh might only function in promoting blood cell precursor maintenance within the context of the highly ordered progenitor-niche microenvironment. It has been hypothesized that the filopodial extensions that emanate from differentiated niche cells are crucial for Hh signal transduction from the PSC to progenitor cells of the medullary zone. The possibility exists that ectopic Hh protein, which is not produced or presented by niche cells, is unable to positively regulate prohemocyte homeostasis. An experimental result consistent with this hypothesis is that expression of UAS-hh under the control of the medullary zone-specific tepIV-Gal4 driver failed to expand the blood cell progenitor population. A second possibility is that the Hh pathway transcriptional effector Ci might require the co-function of Su(H) in its control of prohemocyte maintenance. This model would predict that, in the absence of Su(H) function, Hh signaling would be less (or non) effective in controlling the genetic and cellular events needed for the maintenance of the prohemocyte state. Third, Su(H) might regulate additional target genes, the expression (or repression) of which is crucial for normal blood cell precursor maintenance and the prevention of premature hemocyte differentiation. Finally, it cannot be ruled out that the expression of ectopic Hh in medullary zone cells, in the context of the adverse effects of Su(H) loss of function in these cells, culminates in the disruption of normal Hh pathway signaling due to an unforeseen dominant-negative effect (Tokusumi, 2010).

In summary, these findings add significantly to knowledge of hematopoietic transcription factors that function to control stem-like progenitor maintenance and blood cell differentiation in the lymph gland. An additional conclusion from these studies is that the hh enhancer-GFP transgene can serve as a beneficial reagent to identify and characterize genes and physiological conditions that control the cellular organization of the hematopoietic progenitor-niche cell microenvironment. RNAi-based genetic screens could be undertaken using this high-precision marker to determine signaling pathways and/or environmental stress conditions that might alter niche cell number and function, leading to an alteration in hematopoietic progenitor maintenance coupled with the robust production of differentiated blood cells. Much remains to be determined about the regulated control of these critical hematopoietic changes and their likely relevance to hematopoietic stem cell-niche interactions in mammals (Tokusumi, 2010).

MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells

Metabolic organs such as the liver and adipose tissue produce several peptide hormones that influence metabolic homeostasis. Fat bodies, the Drosophila counterpart of liver and adipose tissues, have been thought to analogously secrete several hormones that affect organismal physiology, but their identity and regulation remain poorly understood. Previous studies have indicated that microRNA miR-8, functions in the fat body to non-autonomously regulate organismal growth, suggesting that fat body-derived humoral factors are regulated by imiR-8. This study found that several putative peptide hormones known to have mitogenic effects are regulated by imiR-8 in the fat body. Most members of the imaginal disc growth factors and two members of the adenosine deaminase-related growth factors are up-regulated in the absence of imiR-8. Drosophila insulin-like peptide 6 (Dilp6) and Imaginal morphogenesis protein-late 2 (Imp-L2), a binding partner of Dilp, are also up-regulated in the fat body of miR-8 null mutant larvae. The fat body-specific reintroduction of miR-8 into the miR-8 null mutants revealed six peptides that showed fat-body organ-autonomous regulation by miR-8. Amongst them, only Imp-L2 was found to be regulated by U-shaped, the miR-8 target for body growth. However, a rescue experiment by knockdown of Imp-L2 indicated that Imp-L2 alone does not account for miR-8's control over the insect's growth. These findings suggest that multiple peptide hormones regulated by miR-8 in the fat body may collectively contribute to Drosophila growth (Lee, 2014).

Protein Interactions

The genes pannier (pnr) and u-shaped (ush) are required for the regulation of achaete-scute during establishment of the bristle pattern in Drosophila. pnr encodes a protein belonging to the GATA family of transcription factors, whereas ush encodes a novel zinc finger protein. Genetic interactions between dominant pnr mutants bearing lesions situated in the amino-terminal zinc finger of the GATA domain and ush mutants have been described. The number of ectopic bristles in pannierD/+ flies increases in flies bearing only a single copy of u-shaped+ but decreases when three copies are present. Activation of a chicken alpha-globin promoter sequence by Pannier in cultured cells is inhibited by Ush. When both Ush and wild-type Pnr are expressed simultaneously, activation is abolished. Stimulation by Pnr is lost progressively in a concentration-dependent manner. Similarly, activation by chicken GATA-1 is also lost after cotransfection with the Ush expression vector. Because Pnr and GATA-1 have no homology outside their GATA DNA-binding domain, and since Ush alone has no effect on globin promoter activity, these observations suggest that the function of Ush is mediated through the GATA DNA-binding domain (Haenlin, 1997).

Additional genetic evidence is provided for an antagonistic interaction of Pannier and U-shaped. Pnr proteins deleted in the C-terminal region do not activate transcription from a heterologous alpha-globin promoter. Overexpression of wild-type and mutant Pnr proteins in transgenic flies regulates achaete-scute expression through the dorsocentral enhancer. Heterozygous flies mutant for pannierD alleles differentiate extra dorsocentral bristles resulting from overexpression of achaete-scute, whereas heterozygous flies mutant for C-terminally deleted Pnr proteins differentiate fewer dorsocentral bristles attributable to decreased ac-sc expression. Overexpression of the U-shaped protein in transgenic flies reduces achaete-scute expression in wild-type but not in pannierD mutants. It is concluded that Ush antagonizes the effects of Pnr, leading in consequence to reduced achaete-scute expression and reduced bristle development (Haenlin, 1997).

Pnr and Ush are found to heterodimerize through the amino-terminal zinc finger of Pnr; when associated with Ush, the transcriptional activity of Pnr is lost. In contrast, the mutant pnr protein with lesions in this finger associates only poorly with Ush and activates transcription even when cotransfected with Ush. The results suggest an antagonistic effect of Ush on Pnr function and reveal a new mode of regulation of GATA factors during development (Haenlin, 1997).

serpent encodes a GATA transcription factor essential for hematopoiesis in Drosophila. Previously, Srp was shown to contain a single GATA zinc finger of C-terminal type. srp encodes different isoforms, generated by alternative splicing, that contain either only a C-finger (SrpC) or both a C- and an N-finger (SrpNC). The presence of the N-finger stabilizes the interaction of Srp with palindromic GATA sites and allows interaction with the Friend of GATA factor U-shaped (Ush). The respective functions of SrpC and SrpNC during embryonic hematopoiesis were examined. Both isoforms individually rescue blood cell formation, which is lacking in a srp null mutation. Interestingly, while SrpC and SrpNC activate some genes in a similar manner, they regulate others differently. Interaction between SrpNC and Ush is responsible for some but not all aspects of the distinct activities of SrpC and SrpNC. These results suggest that the inclusion or exclusion of the N-finger in the naturally occurring isoforms of Srp can provide an effective means of extending the versatility of srp function during development (Waltzer, 2002).

In a systematic search for GATA zinc finger-coding sequences in the Drosophila genome, five genes were found: dGATA-E (CG10278), dGATA-D (CG5034), pnr, grain and srp. dGATA-E and dGATA-D appear to include only a C-finger, while Pnr and Grain contain both an N- and a C-finger. Interestingly, while Srp has been reported to contain a single C-finger, the presence of a putative exon (E4A) coding for an N-finger motif in srp is also evident. Using RT–PCR assays with various combinations of oligonucleotides, it has been shown that E4A is expressed and that E4A and E4B are alternatively spliced to exon 5. In the course of these experiments, an additional splice acceptor site was also identified within E7. This downstream acceptor site in E7 is out-of-frame and leads to the deletion of the Srp glutamine-rich C-terminal region. The data indicate that four alternatively spliced mRNAs are transcribed from srp, two encoding products with a single C-finger (SrpC and SrpCd) and two encoding products with both N- and C-fingers (SrpNC and SrpNCd). Interestingly, in SrpNC and SrpNCd, the two fingers present the same conserved organization as in other GATA factors. Notably, they are separated by 29 amino acids, as in all vertebrate GATA. The two isoforms that contain the full-length exon 7, i.e. srpC and srpNC, have been used to address the functional consequences of the alternative splicing of E4A and E4B (Waltzer, 2002).

Whether SrpC and SrpNC display different properties in vitro was investigated. While the C-finger is necessary and sufficient for specific DNA binding, it has also been shown in vertebrates that the N-finger can stabilize the binding to particular double GATA sites. By electophoretic mobility shift assays (EMSAs), it was determined if SrpNC and SrpC have similar DNA-binding properties. Both in vitro translated SrpC and SrpNC proteins bind to an oligonucleotide containing a consensus GATA site. The binding is specific, since it can be competed out efficiently by an excess of cold GATA oligonucleotide, but not by an excess of the GATC oligonucleotide. The stability of the SrpN and SrpNC complex on a single or on a palindromic GATA site was assessed by dissociation experiments. While the rate of dissociation is similar for SrpC and SrpNC on a single GATA probe, SrpNC bound more stably than SrpC to the palindromic GATA sites (Waltzer, 2002).

The GATA N-finger allows interaction with cofactors of the FOG family. Key residues that are required for the interaction between GATA and FOG are conserved in the Srp N-finger. In order to test the binding between Ush and srp products, pull-down assays were performed in vitro. in vitro translated [35S]methionine-labelled Ush binds to GST–SrpNC, but not GST–SrpC. Thus, Ush specifically interacts with Srp isoforms that contain the N-finger. In addition, like its vertebrate homologs, Ush interacted with the transcriptional corepressor dCtBP in this assay (Waltzer, 2002).

Taken together, the results indicate that SrpNC displays features characteristic of two-fingered GATA factors. The two types of naturally occurring isoforms encoded by srp (with or without the N-finger) have different DNA-binding properties, and only the isoforms including an N-finger can interact with Ush (Waltzer, 2002).

In order to determine whether a spatial regulation of the alternative splicing leading to SrpC and SrpNC occurs during embryonic development, the distribution of the corresponding srp transcripts was assessed by in situ hybridization using specific probes for exon 4A or 4B. At the blastoderm stage and during gastrulation, srpC and srpNC show the same expression pattern. They are expressed in the procephalic mesoderm, the hemocyte primordium, at the anterior and posterior pole, in the primordium of the anterior and posterior midgut as well as in the amnioserosa and in the yolk cells. Later, during germ band extension, and after germ band retraction, srpC and srpNC are expressed identically in the developing fat body. Thus, srpC and srpNC transcripts are not differentially regulated spatially during embryonic development. However, the level of the transcripts is not identical. Indeed, by means of semi-quantitative RT–PCR, it was determined that exon 4B-containing mRNA is five times more abundant than exon 4A-containing mRNA, suggesting that two-fingered isoforms of Srp are less abundant than single-fingered isoforms (Waltzer, 2002).

In order to analyse SrpC and SrpNC activities, their capacities to activate gene expression in vivo were tested during Drosophila embryonic hematopoiesis. Using the UAS-GAL4 system, they were ectopically expressed in the mesoderm and the expression pattern of various hematopoietic markers was assessed. The two genes ush and gcm play critical roles in embryonic hematopoiesis. Their expression in the hematopoietic primordium occurs early and appears to depend on srp activity. Therefore, it was determined whether they are transcriptional targets of SrpC and/or SrpNC. Whereas in a wild-type early embryo, ush expression is restricted to the anterior mesoderm, twist-driven expression of SrpC (twist-SrpC) or SrpNC (twist-SrpNC) induces strong expression of ush throughout the mesoderm. In contrast, twist-SrpC induces gcm expression poorly and in a limited number of mesodermal cells of stage 5 embryos, whereas twist-SrpNC strongly activates gcm expression segmentally from stage 5 to 9 (Waltzer, 2002).

The expression of hematopoietic lineage-specific markers was examined. As plasmatocyte markers, peroxidasin (pxn) and croquemort (crq) were used. Since, crystal cells are the only source of prophenoloxidase (pro-PO) in Drosophila, expression of this gene was used to monitor crystal cell formation. pro-PO transcripts were indeed detected in these cells from early stage 11 to the end of embryogenesis. Analysing these markers, two situations were observed. twist-SrpC and twist- SrpNC have similar abilities to induce expression of the plasmatocyte marker pxn and of the crystal cell marker pro-PO, however expression of crq was induced by twist-SrpC and not by twist-SrpNC. Note that pxn and crq were induced through most of the mesoderm, while pro-PO activation was restricted to the head region (Waltzer, 2002). Taken together, these data show that SrpC and SrpNC have both common and different activities during hematopoiesis. Indeed, both isoforms activate the expression of ush, pxn and pro-PO in a similar manner. However, SrpC and SrpNC differentially stimulate the expression of crq and gcm, respectively, in the mesoderm (Waltzer, 2002).

It is remarkable that srp encodes both single and dual zinc finger-containing products. The results provide strong evidence that this alternative splicing allows production of transcription factors with specific activities. The two isoforms activate the expression of ush and pxn with similar efficiency, suggesting that SrpC and SrpNC have similar transactivating properties in vivo, yet, SrpC (but not SrpNC) activates crq expression, while SrpNC is a much stronger activator of gcm expression than SrpC. The domain coded by exon 4B that is present only in SrpC has no known motif and it is not known if and how it participates in SrpC-specific function. However, the presence of the N-terminal zinc finger encoded by exon 4A may explain some of the distinct features of SrpNC as discussed below (Waltzer, 2002).

As in the case of vertebrate GATA-1, the presence of the N-finger in Srp stabilizes binding to double palindromic GATA sites. Although the N-finger of GATA-1 modulates the binding and the transactivating properties of GATA-1 on synthetic promoters, the functional importance of these effects has remained elusive, particularly since no GATA-1 isoform contains only the C-finger. In the case of srp, these distinct binding properties may have direct functional consequences. For instance, the fact that SrpC and SrpNC activate a common target, ush, whereas only SrpNC strongly activates a specific target, gcm, could be related to the DNA-binding specificity of the two isoforms. A scan of the ush upstream regulatory region shows that it contains several GATA consensus sequences, nine of which are clustered in <1 kb and are organized as three repetitions of three sites. In contrast, GATA sites are far less frequent in gcm regulatory regions and are often organized in palindromes. Considering that ush and gcm are likely to be direct target genes for srp, the different organization of their regulatory regions may explain the differential effect observed (Waltzer, 2002).

The lack of plasmatocyte and crystal cell formation due to an srp null mutation can be rescued by expressing SrpC or SrpNC in the mesoderm. No difference between the two isoforms was seen in this assay, suggesting that the N-finger is not absolutely required for srp function in embryonic blood cell formation. However, in the absence of a functional test, to what extent the formation of embryonic blood cells is fully rescued cannot be determined. Interestingly, rescue experiments with the mouse GATA-1 mutant indicate that the GATA-1 N-finger is dispensable for primitive erythropoiesis but is required for definitive erythopoiesis. In Drosophila, a second wave of hematopoiesis, occurring at the larval stage, gives rise to four different lineages: plasmatocytes, crystal cells, secretory cells and lamellocytes. srp is expressed in the dorsal lymph gland (i.e. the main larval hematopoietic organ) and it probably controls larval hematopoiesis. By analogy to vertebrate GATA-1, the Srp N-finger may provide an additional function for larval hematopoiesis, perhaps during formation of the new cell types (Waltzer, 2002).

In the assay used, the expression of the transgene was limited to the mesoderm but it still rescued blood cell formation. This finding suggests that the early expression of srp in the hematopoietic primordium is sufficient to initiate the genetic program that controls hemocyte formation and differentiation. Interestingly, in the wild-type embryo, srp transcripts are not expressed detectably in hemocytes after stage 11, but Srp protein is detected in plasmatocytes and crystal cells throughout most of embryogenesis. Persistence of srp products in hemocytes might be critical for srp function, and control of srp products at the post-translational level may play a crucial role in the correct regulation of blood cell differentiation. Rescue of crystal cell formation by mesodermal expression of SrpC and SrpNC contrasts with the observation that later expression driven by lz-Gal4 in crystal cells represses their development. Srp levels are reduced in crystal cells compared with surrounding plasmatocytes. Therefore, the results are consistent with a two-step model in which Srp expression is first necessary to induce lz expression and subsequently is downregulated to allow crystal cell differentiation (Waltzer, 2002).

One of the best characterized features of GATA N-fingers is their dimerization with cofactors of the FOG family. Consistent with this feature, it was found that SrpNC interacts with the Drosophila FOG Ush, but SrpC does not. Previous analysis showed that ush regulates the number of crystal cells. It was proposed that this function of ush could be mediated by a putative isoform of Srp containing an N-finger. The current findings strongly support this hypothesis. However, it was not possible to address this issue directly, since both SrpC and SrpNC display a strong Ush-independent repressive effect on crystal cell formation and differentiation (Waltzer, 2002).

A new function of ush revealed here is the regulation of the level of expression of the macrophage receptor crq, suggesting that ush displays a broader function in hematopoiesis than previously assumed. Notably, evidence is provided that Ush modulates SrpNC transactivation of crq. Since Ush interacts with the corepressor dCtBP in vitro, the Ush–SrpNC complex could repress crq expression. However, it is not known whether crq is a direct target of srp, so the possibility that the Ush–SrpNC complex activates a transcriptional repressor that regulates crq cannot be ruled out. Vertebrate FOGs can act as either a coactivator or a corepressor of GATA factors. In Drosophila, Ush is a repressor of Pannier-induced activation in cell culture, and it probably also represses the expression of achaete in the dorso-central proneural cluster in vivo. Furthermore, in a heterologous assay in Drosophila, the CtBP-binding region of mFOG2 is required for repressing the formation of crystal cells but not cardiac cells. Thus several mechanisms seem to regulate the function of the GATA–FOG complex (Waltzer, 2002).

Remarkably, some functions of SrpNC appear to be independent of Ush. Thus, gcm-specific activation by SrpNC is not affected in an ush mutant embryo. Moreover, SrpNC still represses crystal cell formation in the absence of ush. This is reminiscent of mouse erythropoiesis, where both FOG-dependent and FOG-independent regulation of gene expression by GATA-1 have been observed. The molecular mechanisms underlying the regulation by Ush/FOG-1 of SrpNC/GATA-1 activity on some specific targets remain to be elucidated. It is tempting to speculate that the N-finger of SrpNC is involved in the recognition of promoter sequences, on gcm for example, and thus is not available to recruit Ush. Alternatively, other cofactors already localized to the promoter or bound to SrpNC might prevent Ush binding to the N-finger (Waltzer, 2002).

This study has focussed on hematopoiesis, but srp also participates in other developmental processes, such as germ band retraction, midgut differentiation, fat body formation, induction of the immune response and the ecdysone response. It will be interesting to determine the respective roles of SrpC and SrpNC in these different phenomena. Phylogenetic analysis shows that SrpNC is closely related to vertebrate GATA factors. It has been suggested that srp is a functional homolog of the entire vertebrate GATA family, since srp is required in Drosophila for hematopoiesis, like GATA-1/2/3 in mice, and for endodermal development, like GATA-4/5/6. Nevertheless, this hypothesis was at odds with the fact that Srp seemingly had a single zinc finger while all the vertebrate GATAs have two. The present identification of Srp isoforms with two fingers gives new force to this hypothesis. Further, the expression of isoforms of Srp with distinct activities helps to account for the broad range of functions ensured by this gene (Waltzer, 2002).

It is worth noting that alternative splicing eliminating the N-finger has also been described in Bombyx mori GATAß and in chicken GATA-5 genes. Moreover, a BLAST search analysis revealed alternatively spliced human expressed sequence tags coding for two isoforms of a potential GATA factor with either one or two zinc fingers. This suggests that alternative splicing of GATA genes could be more general than previously thought, and as yet unnoticed splice variants of GATA vertebrate genes may generate proteins with only a C-finger (Waltzer, 2002).

In conclusion, these results shed further light on the molecular control of hematopoiesis by the GATA factor Srp. The alternative splicing of srp gives rise to different Ush-interacting and non-interacting Srp proteins with different target gene specificities, thereby contributing to the exquisite control of Drosophila blood cell formation. It is speculated that alternative splicing of the GATA N-finger might be an important mechanism regulating the activity of other GATA genes from insects to man (Waltzer, 2002).

CtBP is required for proper development of peripheral nervous system in Drosophila

C-terminal binding protein (CtBP) is an evolutionarily and functionally conserved transcriptional corepressor known to integrate diverse signals to regulate transcription. Drosophila CtBP (dCtBP) regulates tissue specification and segmentation during early embryogenesis. This study investigated the roles of dCtBP during development of the peripheral nervous system (PNS). This study includes a detailed quantitative analysis of how altered dCtBP activity affects the formation of adult mechanosensory bristles. dCtBP loss-of-function was shown to result in a series of phenotypes with the most prevalent being supernumerary bristles. These dCtBP phenotypes are more complex than those caused by Hairless, a known dCtBP-interacting factor that regulates bristle formation. The emergence of additional bristles correlated with the appearance of extra sensory organ precursor (SOP) cells in earlier stages, suggesting that dCtBP may directly or indirectly inhibit SOP cell fates. It was also found that development of a subset of bristles was regulated by dCtBP associated with U-shaped through the PxDLS dCtBP-interacting motif. Furthermore, the double bristle with sockets phenotype induced by dCtBP mutations suggests the involvement of this corepressor in additional molecular pathways independent of both Hairless and U-shaped. It is therefore proposed that dCtBP is part of a gene circuitry that controls the patterning and differentiation of the fly PNS via multiple mechanisms (Stern, 2009).

This study provides evidence that dCtBP is required for different aspects of PNS development. In addition, extensive genetic characterization demonstrates how altered dCtBP activity can influence the formation of the adult dorsal thoracic mechanosensory organs. The data show that overexpression of dCtBP impairs mechanosensory formation. In contrast, reduction of dCtBP activity leads to variable bristle phenotypes, suggesting that dCtBP is likely operating in different molecular complexes. Namely, the mechanisms by which dCtBP regulates cell fate specification within the PNS may involve protein–protein interactions between dCtBP and at least two factors: Ush and possibly H (Stern, 2009).

The data strongly suggest that dCtBP associates with the Ush-Pnr repressor complex through the Ush PxDLS motif to inhibit the expression of achaete and scute in particular PNCs. This model is supported by the following evidence. First, the ush loss-of-function and gain-of-function phenotypes were phenocopied by the corresponding genetic alterations to dCtBP activity. Second, Ush interacts with Pnr and the Ush-Pnr complex inhibits expression of the achaete and scute genes through GATA sites located within the DC enhancer. Third, the additional SOP cells were formed in both the dCtBP and ush mutant imaginal discs. Fourth, both ush and pnr alleles exhibited dominant genetic interactions with dCtBP. Finally, disruption of the PxDLS motif of Ush partially mitigated the effects of ush overexpression on particular bristles (Stern, 2009).

The evolutionarily conserved physical interaction of dCtBP with Ush is essential for the propagation of certain cell lineages, such as blood cells (crystal cells) of the fruit fly, but not for heart development, processes known to be regulated by Ush and the GATA factors, Pnr and Serpent. Surprisingly, the interaction between CtBP and FOG-1 is not required for erythroid development in mice, despite the fact that this interaction was found to be important in tissue culture experiments and in frog embryos. The current results from the ush overexpression assay suggest that Ush may utilize both the PxDLS motif and another repression domain(s) to fully function, since particular bristles are affected by disruption of the PxDLS motif of Ush. A putative corepressor that interacts with the additional repression domain may act additively or cooperatively with dCtBP or function in different tissue/cell-type contexts. In fact, recently other repression domains in Ush, required for repression of the D-mef2 cardiac gene, were identified and these seemed to cooperatively work with the dCtBP-dependent motif. Consistent with this hypothesis, some dCtBP-interacting factors contain multiple repression domains. Knirps (nuclear receptor), Snail (zinc-finger protein), and H all have two repression domains, dCtBP-dependent and -independent, which can function additively in transgenic flies and/or in tissue culture. It has been also demonstrated that H has an additional repression activity independent of Groucho and dCtBP-binding. Krüppel (zinc-finger protein) has two evolutionarily conserved repression domains. The dCtBP-dependent domain is functional in tissue culture and in transgenic embryos, while the other repression domain is only active in tissue culture but not in transgenic embryos, suggesting a cell-type specific effect. Finally, Brinker (a helix-turn-helix protein) contains at least three repression domains (dCtBP-dependent, Groucho-dependent, and the third repression domain) that are important for repression of different target genes (Stern, 2009).

The physical interaction of dCtBP with H is implicated in sensory organ formation, wing formation, and embryonic patterning. H acts as an adaptor protein to bridge the Groucho and dCtBP corepressors to the DNA-binding factor Su(H), to ultimately inhibit Notch target genes. Vertebrate Notch target genes are similarly repressed by a complex consisting of CtBP with RBP-Jkappa (the mammalian counterpart to Su(H)) and the SHARP/CtIP corepressors. This study demonstrates that the bristles that are affected in dCtBP mutants also show defects in H loss-of-function mutants, although the effect of H is stronger than that of dCtBP. H mutations induce two distinct phenotypes associated with loss of bristles; one is the bald phenotype (a complete loss of both sockets and bristles) due to lack of SOP cells, and the other is the double-socket phenotype (also lack of bristles). A similar bald phenotype was observed in dCtBP mutant backgrounds, such as dCtBP RNAi, the dCtBP87De-10/dCtBP03463 transheterozygote, the dCtBP87De-10 clonal backgrounds. Although compared to what is seen in dCtBP mutants, reduction of H activity interferes more uniformly with the formation of all 11 bristles that were analyzed, the bald phenotype further supports previous observations that dCtBP is involved in H-mediated repression. The double-socket phenotype seen in H loss-of-function mutants was never observed in dCtBP mutants. This distinct phenotype suggests that H may play a role independent of dCtBP, possibly by interacting with another corepressor Groucho. Interestingly, the bald phenotype was also induced by overexpression of dCtBP. The mechanism by which overexpression causes the bald phenotype in all regions except the DC region remains unclear, although one simple explanation could be that overproduction of dCtBP may disrupt the stoichiometric balance of the H/dCtBP/Groucho repression complex (Stern, 2009).

The double bristle phenotype observed in dCtBP mutants suggests that dCtBP may be required to execute cell fate decisions within the SOP lineage. A similar phenotype seen in the H gain-of-function background was the result of a socket-to-bristle cell fate transformation. Of note, this phenotype is clearly distinct from the double bristle phenotype observed in dCtBP mutants, which is always associated with a socket(s). This dCtBP phenotype implies that cousin-to-cousin cell fate conversions may be occurring within the sensory organ lineage. This type of cell fate switch could be similar to the conversion of sheath to bristle observed in hamlet mutants. Hamlet is a zinc-finger transcription factor and interestingly contains a PLDLS peptide sequence located between amino acid 747 and 751, identical to the CtBP-interacting motif. Future experiments will address whether dCtBP and Hamlet can physically interact and function together within the same biological process (Stern, 2009).

Based on the results, it is concluded that dCtBP regulates the development of the mechanosensory organs likely via multiple mechanisms. This highlights the centrality of this transcriptional corepressor in integrating multiple inputs to define boundaries and thereby control pattern formation during development (Stern, 2009).


u-shaped: Biological Overview | Evolutionary Homologs | Developmental Biology | Effects of Mutation | References

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.