betaTubulin56D (ß1 tubulin)


REFERENCES

Afshar, K., Scholey, J. and Hawley, R. S. (1995). Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein. J Cell Biol 131: 833-843. PubMed ID: 7490288

Alphey, L., et al. (1997). KLP38B: A mitotic kinesin-related protein that binds PP1. J. Cell Biol. 138(2): 395-409. PubMed ID: 9230081

Baffet, A. D., Benoit, B., Januschke, J., Audo, J., Gourhand, V., Roth, S. and Guichet, A. (2012). Drosophila tubulin-binding cofactor B is required for microtubule network formation and for cell polarity. Mol Biol Cell 23: 3591-3601. PubMed ID: 22855530

Barton, N. R., Pereira, A. J. and Goldstein, L. S. (1995). Motor activity and mitotic spindle localization of the Drosophila kinesin-like protein KLP61F. Mol. Biol. Cell 6: 1563-1574. PubMed ID: 8589456

Becker, S., et al. (1997). Reciprocal signaling between Drosophila epidermal muscle attachment cells and their corresponding muscles. Development 124(13): 2615-2622. PubMed ID: 9217003

Best, A., Ahmed, S., Kozma, R. and Lim, L. (1996). The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem. 271: 3756-3762. PubMed ID: 8631991

Bialojan, S., Falkenberg, D. and Renkawitz-Pohl, R. (1984). Characterization and developmental expression of ß-tubulin genes in Drosophila melanogaster. EMBO J. 3: 2543-48. PubMed ID: 6210197

Bohrmann, J. and Biber, K. (1994). Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of Drosophila: time-lapse analysis using video-enhanced contrast microscopy. J. Cell Sci. 107: 849-58. PubMed ID: 8056841

Buttgereit, D., et al. (1991). During Drosophila embryogenesis the beta 1 tubulin gene is specifically expressed in the nervous system and the apodemes. Mech. Dev. 33: 107-18. PubMed ID: 1903298

Buttgereit, D. (1993a). Redundant enhancer elements guide beta 1 tubulin gene expression in apodemes during Drosophila embryogenesis. J. Cell Sci. 105 (Pt 3): 721-7. PubMed ID: 8408299

Buttgereit, D. and Renkawitz-Pohl, R. (1993b). Expression of beta 1 tubulin (beta Tub56D) in Drosophila testis stem cells is regulated by a short upstream sequence while intron elements guide expression in somatic cells. Mol. Gen. Genet. 241: 263-70. PubMed ID: 8246879

Carminati, J. L. and Stearns, T. (1997). Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138(3): 629-641. PubMed ID: 9245791

Clark, I., et al. (1994). Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr Biol 4: 289-300. PubMed ID: 7922338

Clegg, N. J., et al. (1997). maelstrom is required for an early step in the establishment of Drosophila oocyte polarity: posterior localization of grk mRNA. Development 124(22): 4661-4671. PubMed ID: 9409682

Cole, D. G., et al. (1994). A "slow" homotetrameric kinesin-related motor protein purified from Drosophila embryos. J. Biol. Chem. 269: 22913-6. PubMed ID:

Cunningham, L. A. and Kahn, R. A. (2008). Cofactor D functions as a centrosomal protein and is required for the recruitment of the gamma-tubulin ring complex at centrosomes and organization of the mitotic spindle. J Biol Chem 283: 7155-7165. PubMed ID: 18171676

Curmi, P. A., et al. (1997). The Stathmin/Tubulin interaction in vitro. J. Biol. Chem. 272(40): 25029-25036

Davis, A., et al. (1994). Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of beta-tubulin. Science 264: 839-42

Deng, W. and Lin, H. (1997). Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev. Biol. 189(1): 79-94.

Dick, T., et al. (1996). Cytoplasmic dynein (ddlc1) mutations cause morphogenetic defects and apoptotic cell death in Drosophila melanogaster. Mol. Cell. Biol. 16: 1966-1977

Dillman, J. F. , Dabney, L. P. and Pfister, K. K. (1996). Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl. Acad. Sci. 93: 141-144

Duan, J. and Gorovsky, M. A. (2002). Both carboxy-terminal tails of alpha- and beta-Tubulin are essential, but either one will suffice. Curr. Biol. 12(4): 313-6. 11864572

Fanarraga, M. L., Bellido, J., Jaen, C., Villegas, J. C. and Zabala, J. C. (2010). TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells. PLoS One 5: e8846. PubMed ID: 20107510

Feierbach, B., et al. (1999). Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin. J. Cell Biol. 144(1): 113-24

Foe, V. E., Field, C. M. and Odell, G. M. (2000). Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos. Development 127: 1767-1787. 10751167

Fukata, Y., Itoh, T.J., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., Watanabe, H., Inagaki, N., Iwamatsu, A., Hotani, H. and Kaibuchi, K., 2002. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol. 4: 583-591. 12134159

Gasch, A., et al. (1988). The expression of ß1 and ß3 tubulin genes of Drosophla melanogaster is spatially regulated during embryogenesis. Mol. Gen. Genet. 211: 8-16

Gepner, J. and & Hays, T. S. (1993). A fertility region on the Y chromosome of Drosophila melanogaster encodes a dynein microtubule motor. Proc. Natl. Acad. Sci. 90: 11132-6

Goodson, H. V., Kang, S. J. and Endow, S. A. (1994). Molecular phylogeny of the kinesin family of microtubule motor proteins. J Cell Sci 107: 1875-1884

Gudi, R., Zou, C., Li, J. and Gao, Q. (2011). Centrobin-tubulin interaction is required for centriole elongation and stability. J Cell Biol 193: 711-725. PubMed ID: 21576394

Hartenstein, V. Younossi-Hartenstein, A. and Lekven, A. (1994). Delamination and division in the Drosophila neurectoderm: spatiotemporal pattern, cytoskeletal dynamics, and common control by neurogenic and segment polarity genes. Dev. Biol. 165: 480-99

Hoyle, H. D., et al. (2001). Tubulin sorting during dimerization in vivo. Mol. Biol. Cell 12: 2185-2194. 11452012

Huang, T. G. and Hackney, D. D. (1994a). Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J Biol Chem 269: 16493-501

Huang, T. G., Suhan, J. and Hackney, D. D. (1994b). Drosophila kinesin motor domain extending to amino acid position 392 is dimeric when expressed in Escherichia coli. J Biol Chem 269: 16502-7

Hummel, T., et al. (2000). Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26: 357-370.

Hurd, D. D., Miller, R. M., Nunez, L. and Portman, D. S. (2010). Specific alpha- and beta-tubulin isotypes optimize the functions of sensory cilia in Caenorhabditis elegans. Genetics 185(3): 883-96. PubMed Citation: 20421600

Jankovics, F. and Brunner, D. (2006). Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster. Dev. Cell 11(3): 375-85. Medline abstract: 16908221

Januschke, J., et al. (2006). The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development 133: 129-139. 16319114

Jin, S., Pan, L., Liu, Z., Wang, Q., Xu, Z. and Zhang, Y. Q. (2009). Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development 136: 1571-1581. PubMed ID: 19297412

Kashina, A. S., et al. (1996). A bipolar kinesin. Nature 379: 270-272

Jin, S., Pan, L., Liu, Z., Wang, Q., Xu, Z. and Zhang, Y. Q. (2009). Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development 136(9): 1571-81. PubMed Citation: 19297412

Kidd, G., Andrews, S. B. and Trapp, B. D. (1996). Axons regulate the distribution of Schwann cell microtubules. J. Neurosci. 16: 946-54

Kohler, J., Schafer-Preuss, S. and Buttgereit, D. (1996). Related enhancers in the intron of the beta1 tubulin gene of Drosophila melanogaster are essential for maternal and CNS-specific expression during embryogenesis. Nucleic Acids Res. 24: 2543-2550

Lane, M. E. and Kalderon, D. (1994). RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA-mediated signal transduction to direct normal microtubule organization. Genes Dev 8: 2986-2995

Lopez-Fanarraga, M., Avila, J., Guasch, A., Coll, M. and Zabala, J. C. (2001). Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 135: 219-229. PubMed ID: 11580271

Li, M., et al. (1994). Drosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte. J Cell Biol 126: 1475-1494

Martin-Bermudo, M. D. (2000). Integrins modulate the Egfr signaling pathway to regulate tendon cell differentiation in the Drosophila embryo. Development 127: 2607-2615

Matthews, K. A., Rees, D. and Kaufman, T. C. (1993). A functionally specialized alpha-tubulin is required for oocyte meiosis and cleavage mitoses in Drosophila. Development 117: 977-91

Matthies, H. J., et al. (1996). Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol. 134: 455-464

Michiels, F., et al. (1987). Testis-speific ß2 tubulins are idntical in Drosophila melanogaster and D. hydei but differ from the ubiquitous ß1 tubulin. Chromosoma 95: 387-95

Moore, J. D., Song, H. and Endow, S. A. (1996). A point mutation in the microtubule binding region of the Ncd motor protein reduces motor velocity. EMBO J. 15: 3306-14

Morris, R. L. and Hollenbeck, P. J. (1995). Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131: 1315-1326

Newmark, P. A., et al. (1997). mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 124(16): 3197-3207

Nielsen, M. G., et al. (2001). Axoneme-specific ß-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr. Biol. 11: 529-533

Nogales, E., Wolf, S. G. and Downing, K. H. (1998). Structure of the alphabeta tubulin dimer by electron crystallography. Nature 391(6663): 199-203

Oegema, K., Whitfield, W. G. F., and Alberts, B. (1995). The cell cycle-dependent localization of the CP190 centrosomal protine is determined by the coordinate action of two separable domains. J. Cell Biol. 131: 1261-1273

Panda, (1994). Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc. Natl. Acad. Sci. 91(24): 11358-62. 7972064

Pesavento, P. A., Stewart, R. J. and Goldstein, L. S. (1994). Characterization of the KLP68D kinesin-like protein in Drosophila: possible roles in axonal transport. J. Cell Biol. 127: 1041-1048

Raff, E. C., et al. (1982). Regulation of tubulin gene expression during embryogenesis in Drosophila melanogaster. Cell 28: 33-40

Raff, E. C., et al. (2000). Conserved axoneme symmetry altered by a component ß-tubulin. Curr. Bio. 10: 1391-1394. 11084342

Rasmusson, K., et al. (1994). A family of dynein genes in Drosophila melanogaster. Mol Biol Cell 5: 45-55

Roll-Mecak, A. and Vale, R. D. (2005). The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr. Biol. 15: 650-655. PubMed citation: 15823537

Roll-Mecak, A. and Vale, R. D. (2008). Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451: 363-367. PubMed citation: 18202664

Roos, J., et al. (2000). Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26: 371-382.

Rothenberg, M. E., Rogers, S. L., Vale, R. D., Jan, L. Y. and Jan, Y. N. (2003). Drosophila pod-1 crosslinks both actin and microtubules and controls the targeting of axons. Neuron 39(5): 779-91. 12948445

Rudolph, J. E., et al. (1987). Three Drosophila Beta-tubulin sequences... & etc. Mol. Cell. Biol. 7: 2231-42

Rybczynski, R. and Gilbert, L. I. (1998). Cloning of a beta1 tubulin cDNA from an insect endocrine gland: developmental and hormone-induced changes in mRNA expression. Mol. Cell. Endocrinol. 141(1-2): 141-151

Sage, C. R., et al. (1995). Site-directed mutagenesis of putative GTP-binding sites of yeast beta-tubulin: evidence that alpha-, beta-, and gamma-tubulins are atypical GTPases. Biochemistry 34: 7409-7419

Schaefer, M. K., Schmalbruch, H., Buhler, E., Lopez, C., Martin, N., Guenet, J. L. and Haase, G. (2007). Progressive motor neuronopathy: a critical role of the tubulin chaperone TBCE in axonal tubulin routing from the Golgi apparatus. J Neurosci 27: 8779-8789. PubMed ID: 17699660

Scouras, Z. G., et al. (1994). The beta-tubulin genes of Drosophila auraria are arranged in a cluster. Curr Genet 25: 84-87

Sharp, D. J., Kuriyama, R. and Baas, P. W. (1996). Expression of a kinesin-related motor protein induces Sf9 cells to form dendrite-like processes with nonuniform microtubule polarity orientation. J. Neurosci. 16: 4370-4375

Shultz, T., Shmuel, M., Hyman, T. and Altschuler, Y. (2008). Beta-tubulin cofactor D and ARL2 take part in apical junctional complex disassembly and abrogate epithelial structure. FASEB J 22: 168-182. PubMed ID: 17704193

Sirajuddin, M., Rice, L. M. and Vale, R. D. (2014). Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16: 335-344. PubMed ID: 24633327

Sisson, J. C., Ho, K. S., Suyama, K. and Scott, M. P. (1997). Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90(2): 235-245.

Strumpf, D. and Volk, T. (1998). Kakapo, a novel cytoskeletal-associated protein is essential for the restricted localization of the neuregulin-like factor, vein, at the muscle-tendon junction site. J. Cell Biol. 143(5): 1259-70

Tavares, A. A. M., Glover, D. M. and Sunkel, C. E. (1996). The conserved mitotic kinase polo is regulated by phosphorylation and has preferred microtubule-associated substrates in Drosophila embryo extracts. EMBO J. 15: 4873-83

Theurkauf, W. E., et al. (1993). A central role for microtubules in the differentiation of Drosophila oocytes. Development 118: 1169-80

Theurkauf, W. E. (1994). Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science 265: 2093-96

Theurkauf, W. E. and Hazelrigg, T. I. (1998). In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development 125(18): 3655-3666

Tokai, N., et al. (1996). Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J. 15: 457-467

Walker, R. A. (1995). Ncd and kinesin motor domains interact with both alpha- and beta-tubulin. Proc. Natl. Acad. Sci. 92: 5960-5964. 7597061

Waterman-Storer, C. M. (1999). Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat. Cell Biol. 1: 45-50

Wheatley, S. P., Kandels-Lewis, S. E., Adams, R. R., Ainsztein, A. M. and Earnshaw, W. C. (2001). Incenp binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp. Cell Res. 262: 122-127. 11139336

Williams, B. C., et al. (1995). The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis. J Cell Biol 129: 709-723

Yang, F., Jiang, Q., Zhao, J., Ren, Y., Sutton, M. D. and Feng, J. (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J. Biol. Chem. 280(17): 17154-62. 15737990

Yarnitzky, T., Min, L. and Volk, T. (1997). The Drosophila neuregulin homolog vein mediates inductive interactions between myotubes and their epidermal attachment cells. Genes Dev. 11(20):2691-2700

Yu, W., Schwei, M. J. and Baas, P. W. (1996). Microtubule transport and assembly during axon growth. J. Cell Biol. 133: 151-157

Zhang, Y., Rai, M., Wang, C., Gonzalez, C. and Wang, H. (2016). Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation. Sci Rep 6: 23735. PubMed ID: 27025979

Zumbrunn, J., et al. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3ß phosphorylation. Curr. Biol. 11: 44-49. 11166179


betaTubulin56D (ß1 tubulin): Biological Overview | Evolutionary Homologs | Regulation | Protein Interactions | Developmental Biology | Effects of Mutation

date revised: 23 August 2017
 

Home page: The Interactive Fly © 1997 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.