logo Maternally transcribed genes
Biochemical pathways

Meiosis in Drosophila

The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte

Assembly of the spindle during meiosis II

The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte

The oocyte is the only cell in Drosophila that goes through meiosis with meiotic recombination, but several germ cells in a 16-cell cyst enter meiosis and form synaptonemal complexes (SC) before one cell is selected to become the oocyte. Using an antibody that recognises a component of the SC or the synapsed chromosomes, an analysis was carried out of how meiosis becomes restricted to one cell, in relation to the other events in oocyte determination. Although Bicaudal-D and egalitarian mutants both cause the development of cysts with no oocyte, they have opposite effects on the behavior of the SC: none of the cells in the cyst form SC in BicD null mutants, whereas all of the cells do in egl and orb mutants. Furthermore, unlike all cytoplasmic markers for the oocyte, the SC still becomes restricted to one cell when the microtubules are depolymerised, even though the BicD/Egl complex is not localised. These results have lead to the proposal of a model in which BicD, Egl and Orb control entry into meiosis by regulating translation (Huynh, 2000).

In the course of a study on the role of inscuteable (insc) during oogenesis, it has been found that an anti Insc antibody recognizes a nuclear structure that is present in some of the germ cells in regions 2a to 3 of the germarium. However, this staining does not disappear in germline clones of protein null allele insc 22, indicating that it is due to a cross-reaction of the antibody. Nevertheless, the staining pattern is very reminiscent of that expected for a component of the synaptonemal complex (SC), and therefore the staining was analyzed further, since this would be the first marker identified for the SC structure in Drosophila. Several lines of evidence indicate that the antiserum does indeed label the SC or a component associated with its formation. (1) The nuclear staining colocalizes with DNA, and has a morphology that corresponds exactly with the observed behaviour of the SC in electron micrographs. The staining is dotty in very early region 2a when the SC starts to form, becomes more thin and thread-like when the chromosomes are fully synapsed, and then becomes more compact in region 3, when the meiotic chromosomes condense to form the karyosome. (2) This structure first appears at the stage when the cysts enter into meiosis. The mitotic cysts in region 1 of the germarium express Bam protein, but this disappears after the final division when the cysts move from region 1 to region 2a of the germarium. The nuclear staining is only detectable in cysts that no longer show any Bam expression, indicating that it labels a postmitotic structure. (3) The spatial distribution of the signal within the cyst precisely follows that described for the SC at the EM level. The signal first appears in two cells in early region 2a and spreads to four cells per cyst in the middle of 2a, before it is restricted to two cells, and finally to one cell in region 2b. Ovaries from females that are mutant for C(3)G were examined, since these are the only characterized mutants that completely abolish the formation of the SC at the electron microscope level. C(3)G encodes the fly homolog of yeast Zip1 and mammalian SCP1, components of the transverse filament of the SC, and the effects of the C(3)G mutation on the SC are therefore likely to be direct (Szauter and Hawley, personal communication to Huynh, 2000). The nuclear structure stained by this antibody is absent in C(3)G mutant cysts, even though the localization of Orb protein to the oocyte occurs normally. Thus, the antibody acts as a marker for the formation of the SC, although the molecular nature of the epitope recognized is not known (Huynh, 2000).

A detailed analysis of the behavior of the SC in comparison to that of cytoplasmic markers for oocyte determination, such as Orb and Bic-D proteins, reveals a number of distinct steps in the restriction of oocyte fate to one cell. The SC first appears in early region 2a cysts in the nuclei of two cells, which are presumably the pro-oocytes. The punctate appearance of the SC suggests that they are at the zygotene stage of meiotic prophase 1. The next one or two cysts per germarium have four cells in synapsis. Two of these cells have four ring canals (the pro-oocytes) and contain an almost continuous SC, typical of the pachytene stage, while the two cells on either side, presumably the cells with three ring canals, contain a zygotene-like SC. In the middle of region 2a, the SC disappears from the two cells with three ring canals, but the two pro-oocytes still have complete SCs, and accumulate Orb and Bic-D proteins. Soon afterwards, Orb and Bic-D become concentrated in only one of these cells, providing the first sign that this pro-oocyte has been selected to become the oocyte. However, the SC still appears identical in both pro-oocytes at this stage. The SC disappears from one pro-oocyte as the cyst enters region 2b, and the cell that remains in meiosis is always the one that has already accumulated Orb or Bic-D. Finally, SC becomes more compact in region 3 and a hole forms in its middle, before it disappears soon after the cyst leaves the germarium. This comparison of the behavior of nuclear and cytoplasmic markers for the oocyte reveals two important features about how oocyte fate becomes restricted to one cell. (1) The two pro-oocytes are already different from the other 14 cells in the cyst in early region 2a, as they both start to form SC at this stage. BicD and Orb only accumulate in these cells in mid 2a, about two cysts further down the germarium. (2) Orb and Bic-D become restricted to the oocyte before any sign of oocyte identity can be deduced from the behavior of the SC (Huynh, 2000).

A cyst can progress through the normal pattern of SC localization to one cell in the presence of high concentrations of colcemid, suggesting restriction of SC to one cell is not mediated by microtubules. Unlike the microtubules, BicD, orb and egl mutations disrupt all steps in the restriction of the SC to one cell, and this leads to two important conclusions: (1) BicD and Egl must have a function that is independent of microtubules, even though they are required for the establishment or maintenance of the MTOC in the oocyte; (2) this function of BicD, Egl and Orb does not depend on their own localisation to the oocyte, since all three proteins are completely delocalized after colcemid treatments, yet the SC still becomes restricted to one cell. Although both BicD and egl mutations give rise to cysts in which all 16 cells appear identical, they have different effects on the behavior of the SC itself. In BicD null germline clones, none of the cells form a detectable SC, whereas all cells reach the full pachytene stage in egl mutants (Huynh, 2000).

BicD and Egl are part of the same protein complex, and it is therefore surprising that they have opposite phenotypes. It is suggested that BicD and Egl may have different functions. BicD is required to enhance SC formation in the cells that normally enter meiosis, whereas Egl functions to repress SC formation in the other cells of the cyst. The strongest mutations in orb have a very similar effect on SC formation as do egl mutants, suggesting that Orb protein is also involved in this repression. Given the colocalization of Orb with Egl and BicD, it will be interesting to determine whether it is part of the same protein complex (Huynh, 2000).

The discovery that the restriction of SC to one cell requires neither microtubules nor the localization of BicD, Egl and Orb raises the question of how this asymmetry arises. It has previously been suggested that BicD and Egl function in the transport of meiosis promoting factors and oocyte determinants from the future nurse cells into the oocyte. Although this could still be the case if this transport occurs either very early in region 2a or along some non-microtubule cytoskeletal network, such as actin, this model cannot easily explain why BicD and egl mutations have opposite effects on SC formation. An alternative model is preferred in which BicD, Egl and Orb are required to interpret a pre-existing asymmetry that is set up in region 1 (Huynh, 2000 and references therein).

The divisions that give rise to the cyst are asymmetric with respect to the fusome, and recent data strongly suggest that this structure, or some factor associated with it, somehow marks the future oocyte. If this is correct, this unidentified mark could regulate the BicD/Egl complex, so that it performs different functions in the different cells of the cyst. For example, the Egl-dependent activity of the complex could repress SC in the cells that do not inherit the factor, and the BicD-dependent activity could enhance its formation in the cells that do, thereby explaining the different phenotypes of the null mutations in the two genes. It is interesting to note that BicD protein is phosphorylated, and that mutations that disrupt this phosphorylation give rise to egg chambers with 16 nurse cells. Thus, this post-translational modification could be responsible for the spatial regulation of the activity of the BicD/Egl complex (Huynh, 2000).

Although these results suggest that BicD and Egl have functions that are independent of the microtubules, the nature of this activity is unclear. However, a number of lines of evidence suggest that these proteins may be involved in translational control. (1) BicD was originally identified because two single amino acid changes in the gene produce a dominant bicaudal phenotype in which Oskar mRNA is mis-expressed at the anterior of the oocyte. Since Oskar translation is normally repressed unless the RNA is localized to the posterior pole, these mutant BicD proteins must not only trap Oskar RNA at the anterior, but also relieve translational repression. Mutations in egl suppress the BicD gain-of-function phenotype, while extra copies of egl enhance it, indicating that the ectopic translation of Oskar mRNA requires the formation of the BicD/Egl complex. The second argument for a role of BicD and Egl in translational control comes from the discovery that orb null mutations give a very similar phenotype to egl mutants. Orb protein, which contains two RNA-binding motifs, has recently been shown to associate with the 3'UTR of Oskar mRNA, and is required for its efficient translation. Similarly, the Xenopus Orb homolog, CPEB, binds to elements in the 3'UTRs of a number of mRNAs, and induces the polyadenylation and translational activation of these mRNAs during oocyte maturation. Furthermore, the Spisula solidissima (clam) homolog plays a role not only in translational activation, but also in repression, since it binds to masking elements in the 3'UTRs of cyclin mRNAs to prevent their translation before fertilization. Thus, Orb functions as a regulator of translation, and can act as both a repressor and an activator in other species. This raises the possibility that the BicD/Egl complex exerts different effects in the cells of the cyst by controlling the inhibitory and activating functions of Orb. For example, Orb could repress the translation of factors required for SC formation in the future nurse cells, and activate their translation in the pro-oocytes and oocyte. If this model is correct, the selection of the oocyte would occur by a similar mechanism to the other asymmetries that are generated later in oogenesis, which are also all based on the translational regulation of asymmetrically localized mRNAs, such as Bicoid, Gurken and Oskar (Huynh, 2000 and references therein).

The behavior of the SC indicates that the determination of the oocyte occurs in two steps. The two pro-oocytes must have been selected by early region 2a, because they already behave differently from the other 14 cells of the cyst at this stage, but the development of the cyst remains symmetric until the end of 2a, when BicD and Orb disappear from the losing pro-oocyte. It has been proposed that the choice between the two pro-oocytes could depend on competition between these cells as they progress through meiosis, with the cell that is more advanced becoming the oocyte and then inhibiting its neighbor. However, the results presented here argue against this model: (1) cytoplasmic factors, such as BicD and Orb, are concentrated in one cell before there is any visible difference between the SCs in the two pro-oocytes; (2) the cytoplasmic aspects of oocyte determination occur normally in C(3)G mutants, which completely lack the SC, and in meiW68 mutants, which fail to initiate meiotic recombination. Thus, any competition between these two cells must be independent of SC formation and recombination (Huynh, 2000 and references therein).

Although meiosis is not required for oocyte determination, it can clearly influence this process, as demonstrated by the results on the spn genes. Several lines of evidence indicate that mutations in spnB, C and D disrupt the repair of dsDNA breaks during meiotic recombination, activating a checkpoint pathway that inhibits Gurken mRNA translation and the formation of the karyosome. The results presented here strongly suggest that this checkpoint also inhibits the determination of the oocyte, since the SC becomes restricted to one cell much later than in wild type in these mutants. This phenotype also allows the time when recombination occurs to be narrowed down. This process cannot begin until the SC forms in early region 2a, but the double-strand DNA breaks have to be repaired before the two cells with three ring canals exit meiosis, since this stage is delayed in spnC mutants, indicating that the checkpoint pathway has already been activated (Huynh, 2000).

Activation of the meiotic checkpoint causes a change in the mobility of Vasa protein, leading to the suggestion that the patterning defects seen in spn mutants result from the inhibition of Vasa by this pathway. The results presented here show that the SC becomes restricted to one cell at the normal time in most vasa mutant cysts. Thus, the delay in oocyte determination in spn mutants cannot be a consequence of the inhibition of Vasa, suggesting that the checkpoint pathway has additional targets that control oocyte selection (Huynh, 2000).

One problem in the study of cyst development in region 2 has been the difficulty in ordering the various developmental events that occur in this region. Using this marker for the SC, the behavior of this structure relative to the localization of cytoplasmic factors like Orb and BicD could be followed, and these could be correlated with the data from EM studies on the behavior of the SC, and the centrioles. On the basis of this comparison, a number of distinct stages in the restriction of oocyte fate to one cell can be distinguished: (1) The first cyst in region 2a shows no sign of SC, but Bam protein has already disappeared. (2) The two pro-oocytes reach the zygotene stage of meiosis in early region 2a, and start to form SC. (3) Soon afterwards, the two cells with three ring canals also form SC. The SC in the pro-oocytes has reached its maximum length, indicating that they have reached the pachytene stage. The dsDNA breaks generated during recombination must have already been repaired, since the meiotic checkpoint can arrest the pattern of SC staining at this stage. EM data also suggest that intracellular transport begins at this point, since the first signs of the migration of the centrioles towards the pro-oocytes can be seen when the two cells with three ring canals are in meiosis, and this may correlate with the first appearance of a focus of microtubules in the cyst in the middle of region 2a. (4) The SC disappears from the two cells with three ring canals in the middle of region 2a, but the two pro-oocytes still have complete SCs. Orb and Bic-D start to accumulate in the pro-oocytes at this stage. The centrioles have migrated to either side of the largest ring canal, which connects the two pro-oocytes, and the first signs of 'nutrient streaming' appear, since elongated mitochondria can be seen inside the ring canals in electron micrographs. (5) All of the steps in cyst development so far are symmetric, relative the largest ring canal, and the first asymmetry becomes evident in cysts numbers 5 and 6, when Orb and Bic-D become concentrated in one cell. The centrioles also start to move into the oocyte, and the largest ring canal is presumably open, because mitochondria can now be seen inside it. However, both pro-oocytes still contain an identical intact SC at this stage. (6) As the cyst enters region 2b, one pro-oocyte loses its SC and reverts to the nurse cell pathway of development. The pro-oocyte that remains in meiosis and becomes the oocyte is always the cell that has already accumulated Orb and Bic-D. The cytoplasm of the oocyte now contains all of the centrioles, BicD and Orb proteins, and an obvious MTOC, which nucleates microtubules that extend into the other 15 cells of the cyst. Thus, both the nucleus and cytoplasm of the oocyte are clearly different from the other cells of the cyst by this stage. Immediately afterwards, the oocyte starts to behave differently from the other cells in the cyst, as it moves to the posterior during the transition between region 2b and region 3. At the same time, the karyosome forms, and the SC becomes more compact, before disappearing soon after the cyst leaves the germarium (Huynh, 2000).

Assembly of the spindle during meiosis II

In the Drosophila oocyte, meiosis is arrested in the first division of metaphase: at this stage a tapered spindle forms, aligned parallel to the egg surface. The chromosomes are therefore located in the cortical region near the anterior pole, whereas fusion of parental complements occurs in the inner ooplasm. How does the female pronucleus reach the interior of the egg? The second meiotic spindles are arranged in tandem, end to end, and disposed perpendicular to the longitudinal axis of the egg with the innermost spindle carrying the female pronucleus. This pattern of spindle organization is probably involved in the migration of the female pronucleus deeper into the egg near the cytoplasmic domain of the male pronucleus. The precise time at which the mitotic spindle of Drosophila changes orientation is unknown. However, spindle rotation from a position parallel to the egg surface to a radial orientation presumably occurs during or shortly after the oocyte passes through the oviduct. How spindle orientation is achieved and maintained during meiosis is an intriguing question. Microtubules linking spindle poles to the oocyte surface have been implicted in the rotation and anchoring of the meiotic apparatus in Xenopus oocytes and in other organisms, but this does not seem to be the case in the Drosophila oocyte, since the meiotic spindles lack astral microtubels. However, the observation that a transient array of microtubules links the meiotic apparatus to discrete subcortical foci suggests that in Drosophila the orientation of the spindle also requires a functional interaction between the spindle and the oocyte cortex (Riparbelli, 1996 and references).

The microtubule array of mitosis II observed between the twin spindles at metaphase, anaphase and telophase might be an intermediate between the anastral poles of the meiotic I spindles and the astral poles of the mitotic spindles in early embryos. A complex pathway of spindle assembly takes place during resumption of meiosis at fertilization, consisting of a transient array of microtubules radiating from the equatorial region of the spindle toward discrete foci in the egg cortex. A monastral array of microtubules is observed between twin metaphase II spindles in fertilized eggs. These microtubules originating from disc-shaped material stain with Rb188 antibody specific for an antigen asssociated with the centrosome of Drosophila embryos (DMAP190 or CP190). Therefore, the Drosophila egg contains a maternal pool of centrosomal components undetectable in mature inactivated oocytes. These components nucleate microtubues in a monastral array after activation, but are unable to organize bipolar spindles (Riparbelli, 1996).

The meiosis II spindle of Drosophila oocytes is distinctive in structure, consisting of two tandem spindles with anastral distal poles and an aster-associated spindle pole body between the central poles. Assembly of the anastral:astral meiosis II spindle occurs by reorganization of the meiosis I spindle, without breakdown of the meiosis I spindle. The unusual disc- or ring-shaped central spindle pole body forms de novo in the center of the elongated meiosis I spindle, followed by formation of the central spindle poles. gamma-Tubulin transiently localizes to the central spindle pole body, implying that the body acts as a microtubule nucleating center for assembly of the central poles. The first step in formation of the central pole body is the appearance of puckers in the center of the the meiosis I spindle, followed by the pinching out from the spindle of a disc or ring of microtubules that becomes the central pole body. The manner in which the central spindle pole body forms suggests the involvement of a microtubule motor. If so, the motor involved is likely to be different from Ncd (Nonclaret disjunctional), since loss of Ncd function does not seem to prevent its formation. Following the formation of the central spindle pole body, the microtubules arrayed to either side of the central body narrow into poles, forming the mature meiosis II spindle. The central poles become more tapered during progression through meiosis II, and the central spindle pole body also changes in morphology: the disc or ring becomes asterlike, then enlarges into a ring that lies between the two central telophase II nuclei (Endow, 1998).

Localization of gamma-tubulin to the meiosis II spindle is dependent on the microtubule motor protein, Ncd. Absence of Ncd results in loss of gamma-tubulin localization to the spindle and destabilization of microtubules in the central region of the spindle. Likewise, during meiosis I, the minus-end motility of Ncd and its crosslinking activity are probably needed to focus microtubules into spindle poles for the correct functioning of meiosis I. Assembly of the anastral:astral meiosis II spindle probably involves rapid reassortment of microtubule plus and minus ends in the center of the meiosis I spindle. This can be accounted for by a model that also accounts for the loss of gamma-tubulin localization to the spindle and destabilization of microtubules in the absence of Ncd (Endow, 1998).

A model for assembly of the Drosophila oocyte meiosis II spindle is suggested: gamma-Tubulin is first recruited or relocalized, possibly as gamma-TuRC, to the midbody of the meiosis I spindle, where it functions to nucleate microtubules for formation of the meiosis II central spondle poles. The loss of gamma-tubulin localization to the spindle in the absence of Ncd suggests that the Ncd motor serves to recruit or anchor gamma-tubulin to the center of the spindle. The Ncd motor would then stabilize newly nucleated microtubule minus ends and focus the microtubules into poles. The unstabilized plus ends of the microtubules in the center of the spindle (remaining from meiosis I) would undergo rapid depolymerization as a consequence of dynamic instability. Stabilization of the newly nucleated microtubule minus ends and depolymerization of the plus ends would cause a rapid sorting out of the microtubules in the center of the meiosis I spindle, replacing microtubule plus ends with minus ends. The distal poles of the meiosis II spindle would be retained from the meiosis I spindle and maintained by the same forces that originally formed them: the crosslinking activity and minus-end movement of Ncd along spindle microtubules (Endow, 1998).


Endow, S. A. and Komma, D. J. (1998). Assembly and dynamics of an anastral:astral spindle: the meiosis II spindle of Drosophila oocytes. J. Cell Sci. 111: 2487-2495 369046

Huynh, J.-R. and St Johnston, D. (2000). The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development 127: 2785-2794.

Riparbelli, M. G. and Callaini, G. (1996). Meiotic spindle organizatin in fertilized Drosophila oocyte: presence of centrosomal components in the meiotic apparatus. J. Cell Sci. 109: 911-918

maternal genes

Home page: The Interactive Fly © 1995, 1996 Thomas B. Brody, Ph.D.

The Interactive Fly resides on the
Society for Developmental Biology's Web server.