

Development in Zebrafish, a Genetic Approach

Didier Stainier University of California

dstainier@biochem.ucsf.edu

Zebrafish genetics

Didier Stainier, UCSF Biochemistry

Juquehy, Brazil

5/2/05

Saccharomyces cerevisiae

Caenorhabditis elegans

Drosophila melanogaster

Saccharomyces cerevisiae

Caenorhabditis elegans

Drosophila melanogaster

Danio rerio

GENETIC SCREENS

What can one screen for?

- developmental processes
- physiological processes
- behavior
- other

external fertilization

some key developmental stages

Zebrafish embryonic development

QuickTime[™] and a Animation decompressor are needed to see this picture.

large number of progeny

screening based on morphological traits

Zebrafish embryos showing abnormal DV patterning

V; ventralized

chordin mutants

C; dorsalized

bmp2 mutants *tolloid* mutants

Cardiac valve formation

QuickTime[™] and a Video decompressor are needed to see this picture. QuickTime[™] and a Video decompressor are needed to see this picture. QuickTime™ and a Cinepak decompressor are needed to see this picture.

AP staining

gutGFP line

Ventral View

QuickTime** and a Motion.JPEG A decompressor are needed to see this picture.

Duc Dong

80 hpf

QuickTime[™] and a Motion JPEG A decompressor are needed to see this picture.

Ρ

lfabp-dsRed elastase-GFP insulin-dsRed

Ryan Anderson

forward genetic screens in zebrafish

- ENU

- insertional mutagenesis (retroviral vectors)
- large number of tanks (diploid screens)
- 3-4 scientists
- 18-24 months

What can you do with your mutants?

- clone the gene, look at its expression pattern
- analyze cell-autonomy
- gain-of-function experiments

Going from mutation to gene

Endoderm Development in Zebrafish

Late gastrula sox17

46 hours *fkd7*

Mutations that affect early endoderm formation in zebrafish

sox17 late gastrula

- one-eyed pinhead (oep)
- casanova (cas)
- bonnie and clyde (bon)

- faust (fau)

all endodermal cells missing

90% of endodermal cells missing

60% of endodermal cells missing

Expression of zebrafish *sox17* reveals the endodermal progenitors in wild-type but not *casanova* embryos

wild-type

cas

sox17 first implicated in endoderm formation in the frog *Xenopus laevis*

Alexander et al., 1999

Generating genetic mosaics in zebrafish

<u>Results of the cell transplantation experiments</u>

- casanova mutant cells never form endoderm (either in wild-type or mutant embryos)
- wild-type cells can form endoderm in *casanova* mutant embryos

The endoderm phenotype in *casanova* mutants is cell-autonomous, i.e. *casanova* functions within the endodermal lineage

Proteins that affect early endoderm formation in zebrafish

sox17 late gastrula

- Oep (Nodal co-receptor. Schier; Whitman)
- Cas (Sox-related transcription factor)
- Bon (Mix-type HD transcription factor)
- Fau (Gata5: Zinc-finger transcription factor)

How are Oep, Cas/Sox-related Bon/Mix-type Fau/Gata5 positioned relative to each other in the pathway leading to endoderm formation?

bon overexpression rescues endoderm formation in *oep* but not *cas* mutants

Alexander et al., 1999

Endoderm formation in zebrafish

оер bon/mix-type cas/sox-related *sox17* (endoderm)

Endoderm formation is defective in *faust* and *bonnie and clyde* mutants

Bon and Gata5 do not regulate each other

gata5

Reiter et al., 2001

A possible model of early endoderm formation in zebrafish

sox17 late gastrula

marginal zone

Analyzing the function of *cas* by gain-of-function (i.e. misexpression) experiments

16-cell stage

Ectopic cas expression can transfate mesoderm into endoderm

Transfating ability of cas

Kikuchi et al., 2001

What can you do with your mutants?

- clone the gene, look at its expression pattern
- analyze cell-autonomy
- gain-of-function experiments

Tools

forward genetics

reverse genetics; morpholinos (use with caution) (use splice MOs whenever possible) lineage analysis, cell transplantation

gain-of-function experiments:

- DNA, RNA injections
- spatial control (binary systems: Gal4-UAS (Fraser))
- temporal control (heat shock promoter)

other genetic tools:

- transposons, ires, cre-lox

Tools

what is missing?

homologous recombination

spatial and temporal control of gene knock-down

Developmental Biology

QUESTIONS

- cell differentiation
- morphogenesis

APPROACH

- 1) gene identification (forward genetics)
- 2) cell biological mechanisms
- 3) biochemical mechanisms

embryology
forward genetics
cell biology

precardiac mesoderm morphogenesis in zebrafish

dorsal views

precardiac mesoderm morphogenesis in zebrafish

transverse sections

pre-myocardial cells

pre-endocardial cells

endoderm

Myocardial migration

Endocardial migration

Endodermal GFP line

Nick Osborne

CARDIA BIFIDA MUTATIONS

1) AFFECTING MYOCARDIAL DIFFERENTIATION

- one-eyed pinhead (oep) (CFC protein)

- faust (fau) (Gata5)

- hands off (han) (Dhand/Hand2)

2) AFFECTING HEART CELL MIGRATION A) VIA AFFECTING ENDODERM FORMATION

- one-eyed pinhead (oep) (CFC protein)
- casanova (cas) (Sox32)
- *bonnie and clyde* (*bon*) (Mix-type HD)

- faust (fau) (Gata5)

B) VIA SOME OTHER MECHANISM

- natter (fibronectin)

- *miles apart (mil)* (S1P receptor)

→ - two-of-hearts(toh)

How does Fibronectin regulate myocardial migration?

- chick: Fn appears to be distributed in a gradient towards the midline (K. Linask)
- mouse: *Fn* mutants can show cardia bifida (R. Hynes)

Model: haptotaxis (moving towards areas of greater adhesiveness)

Lack of Fn deposition in nat -/- embryos

Le Trinh

Myocardial precursors form maturing epithelia during the migration stages

Fibronectin is required for proper junction formation in the myocardial precursors

Myocardial precursors form maturing epithelia during the migration stages

genetic requirements for myocardial polarization

- Fibronectin (Trinh and Stainier, Dev Cell, 2004)
- Dhand/Hand2 (Trinh, Yelon and Stainier, *Current Biology*, 2005)

cell biological mechanisms

cell polarity, cell shape, cell migration

intracellular trafficking, signaling, organelle biogenesis

IMAGING

A novel transgenic line to visualize Ca++ flux

QuickTime[™] and a Animation decompressor are needed to see this picture.

Calcium Green/Optical Mapping

Explanted 48 hpf hearts (wt and *sih* -/-) exposed to calcium green

Sehnert et al., 2001 Nature Genetics

gCAMP/Optical Mapping

generation of a transgenic line (gCAMP expressed in myocardial cells) (Neil Chi)

Nakai et al., 2001 NBT/Imoto Lab

G-CAMP/Optical Mapping

24 hpf

Raw RT

QuickTime[™] and a Animation decompressor are needed to see this picture. QuickTime[™] and a Animation decompressor are needed to see this picture.

Processed 1/3 RT

All embryos were treated with 2,3 BDM, an ATP myofibrillar inhibitor, in order to arrest cardiac contraction. Images were obtained with a CCD camera at a 20-30ms/frame capture rate. 40x objective used.

G-CAMP/Optical Mapping

48 hpf

Raw RT

QuickTime[™] and a Animation decompressor are needed to see this picture. QuickTime[™] and a Animation decompressor are needed to see this picture. Processed 1/3 RT

5 dpf

Raw RT

QuickTime[™] and a Animation decompressor are needed to see this picture.

QuickTime[™] and a Animation decompressor are needed to see this picture. Processed 1/3 RT

Neil Chi

connexin mutants display aberrant calcium waves

QuickTime[™] and a Animation decompressor are needed to see this picture.

embryos were co-injected with ctnt2 and connexin MOs

Neil Chi

ACKNOWLEDGEMENTS

Endoderm formation

*Jon Alexander *Jeremy Reiter *Yutaka Kikuchi, Ph.D. Pia Aanstad, Ph.D.

heart formation

Le Trinh Fn, Hand2

Debbie Yelon Skirball

heart function

Neil Chi, M.D., Ph.D. (cardiac function)

Robin Shaw, M.D., Ph.D. Lily Jan

endocardial cushion formation

vasculogenesis

cardiac function