
   “ Our real teacher has been and still is the embryo, 
who is, incidentally, the only teacher who is always 
right. ”  Viktor Hamburger  

 THE CHICK EMBRYO AS A 
MODEL SYSTEM 

  Introduction 

 The ancient Egyptians and Greeks were history’s first 
recorded embryologists, both of which used the chick 
as a model system to understand how human devel-
opment occurred. In 343  bc  (historians ’  best estima-
tion), Aristotle studied the chick embryo as a means to 
discover secrets of the formation of life. In Book II of 

Generation of Animals , Aristotle highlights the chick as 
the greatest model with which to study eye develop-
ment ( Aristotle, 343  bc  ), and later, in Book VI, he gives a 
gross anatomical description of the entire developmen-
tal process of the chick embryo ( Aristotle, 343; 350  bc  )  . 
Understandably, Aristotle takes note of one of the most 
noticeable and prominent features of the chick embryo –
the eyes, telling the readers that the eyes are  “ swollen 
out to a great extent ”  and that  “ this condition of the 
eyes lasts on for a good while ”  ( Aristotle, 343  bc  ). On 
the 10th day of development, he said,  “ the head is still 
larger than the rest of its body, and the eyes larger than 
the head, but still devoid of vision. The eyes, if removed 
about this time, are found to be larger than beans, and 
black; if the cuticle be peeled off there is a white and cold 
liquid inside, quite glittering in the sunlight ”  ( Aristotle, 
350 bc  ). 
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 As vague as Aristotle’s descriptions were, no 
observations of the chick eye surpassed those of the 
great teacher and philosopher until almost 2,000 
years later. All of the gross anatomical features of 
eye development were first discovered in the chick, 
including two hallmarks of eye development; the 
choroid fissure which was first described by Marcello 
Malpighi in 1672, and much later, the evagination 
of the optic vesicle from the neural tube which was 
described by Christian Pander in 1817 (Adelmann, 
1966). Descriptions of the embryonic retina were first 
recorded by Antoine Maitre-Jan in 1722, who said at 
the 9th day of development, it “ is white and has the 
consistency of a coagulum ”  (Adelmann, 1966). 

 These and many other investigators using the chick 
as a model system paved the way for the late 19th and 
20th century research to bring basic research to where 
it is today. Within this chapter, the reader will find a 
discussion of the advantages of the chick embryo as a 
model system for eye research, both in development 
and regeneration research. There is also a discussion 
of the techniques that have been used extensively with 
the chick embryo in the past, as well as new advances 
that will propel the use of the chick in eye research far 
into the future. 

  The Advantages of the Chick Embryo 

 Chick embryos are wonderful to work with in a variety 
of aspects. The following are general points that make 
chick embryos such a useful model system. (1) The 
eggs are a cheap and readily available source of mate-
rial that is available year-round from a local or regional 
supplier. In the day and age of the transgenic mouse, it 
has become an issue to find systems that can be used, 
either as alternative vertebrate models or models to be 
used in conjunction with more expensive model sys-
tems, to define the functions of various genes. In com-
parison to the mouse, the chick is very inexpensive and 
has very little cost associated with housing. This has led 
to studies using the chick embryo as a high-through-
put tool in which genes and reporter constructs driven 
by untranslated genomic sequences are introduced into 
the embryo as an initial determination of gene func-
tion, necessary cis-acting regions, etc. (Timmer et al.,
2001; Nakamura et al., 2004; Uchikawa et al., 2004).
(2) Chicks undergo a series of successive and reproduc-
ible changes during development that have been well 
documented by several embryologists, most notably 
Malpighi, Lillie, Huxley, and Hamburger and Hamilton 
(Malpighi, 1672; 1675; Lillie, 1908; Huxley, 1934; 
Hamburger and Hamilton, 1951). This is a critical issue 

primarily because investigators would like to be able to 
manipulate embryos at specific stages, so a time scale 
of approximately when embryos incubated at a specific 
temperature will become a particular stage is necessary. 
In addition, a large number of eggs can be incubated 
at one time in order to obtain embryos that are at the 
desired stage. (3)  In ovo  embryonic studies are more eas-
ily accomplished than in vivo  mammalian embryonic 
studies. For instance, experiments in which dividing 
cells are labeled in the chick embryo do not have to deal 
with the label, tritiated thymidine or bromodeoxyurdine 
(BrdU), being diluted by the maternal vascular system. 
(4) For many tissues, including the eye, the tissue is eas-
ily accessible for various manipulations. Using some 
very cheap and readily available instruments, windows 
in the eggs can be opened, revealing the embryo and 
creating space for the insertion of instruments for sur-
gical manipulations, etc. (5) Many experimental meth-
ods have been well established to study the chick eye, 
including retinal, lens and retinal pigmented epithelial 
(RPE) cultures, retinal wholemount  in situ  hybridiza-
tion and immunohistology,  in ovo  electroporation, and 
expression of genes via retroviral infection (Belecky-
Adams et al., 1996; 1997; 1999; 2001; 2002; Weng et al.,
1998; Adler et al., 2001; 2002; Sehgal et al., 2006; Wilson 
et al., 2007). There will be a discussion of some of these 
techniques later in the “ Toolbox ”  section of this chapter. 
(6) The period over which the eye develops is relatively 
short and occurs entirely within the embryonic period 
of development. The short period over which the retina 
develops is a significant advantage when considering 
functional studies with genes of interest. In addition, 
it is also an advantage that the majority of differentia-
tion within the retina occurs embryonically (Fujita and 
Horii, 1963; Prada et al., 1991), hence investigators do 
not have the added stress that birth places on the devel-
oping systems to complicate analysis. (7) Chick embry-
onic eyes are enormous! ( Fig. 8.1(A) and (B)   ). This can 
be a substantial advantage when considering techniques 
such as single cell or explant cultures, due to the availa-
bility of large amounts of tissue. (8) The chicken genome 
is available (Wallis  et al. , 2004)   and methods for making 
the chick embryo more accessible to genetic manipula-
tions are being quickly developed. This may be of inter-
est to investigators for a variety of reasons, including 
comparative analyses of various homologs or orthologs 
in other species, the study of gene organization and 
regulation, and the study of the evolution of genes, gene 
families, and signaling pathways. (9) The retina can 
regenerate during early development (Coulombre and 
Coulombre, 1965; Park and Hollenberg, 1989; 1991; 
Spence et al., 2004; 2007a,b) ( Fig. 8.2   ). This is a substan-
tial advantage if one wishes to study how the nervous 
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FIGURE 8.1    (A) A photograph of a chick embryo taken at E4 showing the location of the large developing eye. (B) A cross section of a 
developing eye at E11 showing the location of the retina, retinal pigmented epithelium (RPE), ciliary marginal zone (CMZ), ciliary body (CB), 
lens, (L), and the optic nerve (ON).      
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FIGURE 8.2    (A) A cross section 
of a developing eye at E4 show-
ing the location of the ciliary mar-
ginal zone (CMZ), lens (L), retina, 
and retinal pigmented epithelium 
(RPE). (B) Cross section of the chick 
eye after retinectomy at E4. The 
CMZ is not removed and the RPE 
is thickened but not yet pigmented. 
(C) Cross section of retina regener-
ated in the presence of FGF2 at 7 
days post-retinectomy (E11). Retina 
is regenerated from the retinal 
stem/progenitor cells present in 
the ciliary margin (cr) and transdif-
ferentiation of the RPE (td). (D) 
Cross section of the chick eye 3 
days post-retinectomy showing the 
lack of regeneration in the absence 
of FGF2. 
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system regenerates and/or compare early timepoints, 
when regeneration is possible with timepoints when it is 
not possible. Regeneration of the chick retina will be dis-
cussed in more detail in the second half of this chapter. 

  The Embryonic Chick Toolbox 

  Surgical Manipulations 

 The chick system has a long and venerable 
history using ablations, rotations, and auto-, allo- and 
xeno-transplantations. These surgical manipulations 
in the chick embryo have led to some of develop-
mental biology’s most important findings concerning 
induction of various tissues, fate mapping, patterning, 
axonal pathfinding, cell lineage, and differentiation. 
There have been several recent articles concerning the 
use of the chick in developmental biology that hit on 
many of these manipulations, so we will not repeat 
what was discussed in these articles (Stern, 2005). 
Rather, we will focus primarily on examples of proce-
dures used in the visual system of the chick. 

 Naturally, the accessibility of the chick embryo has 
led to elegant analyses using chimeras of labeled chick 
cells transplanted back into host chickens or chimeras 
composed of quail and chick. Several of these studies 
have been directed at determining the fate maps of cells 
that give rise to the eye or parts of the eye (Hyer et al.,
1998; 2003). A large body of work using surgical manip-
ulations has centered on the role of various tissues in 
patterning of the eye. For instance, removal of the lens 
ectoderm has shown the importance of the ectoderm 
in retinal differentiation and showed that the presence 
of the lens ectoderm is necessary for the morphologi-
cal development of the optic cup (Fernandez-Garre 
et al., 2002). Importantly, this same study has established 
that the lens ectoderm  is necessary at a certain stage for 
development of the optic cup, however, the presence 
of the lens following its invagination into the optic cup 
appears not to be necessary for the survival and devel-
opment of the optic cup (Fernandez-Garre et al., 2002). 
To determine when dorso-ventral eye polarity is estab-
lished, Araki and colleagues utilized rotations of optic 
cup explants, using the choroid fissure as a marker 
of polarity (Uemonsa et al., 2002). Ablations and rota-
tions and quail-chick chimeras of various portions of 
the optic vesicle have helped to determine when the 
naso-temporal development of the retina is specified 
(Dutting et al., 1995a,b; Thanos et al., 1996; Mueller et al.,
1998). Transplantation and rotation of the lens, has been 
used to show that the size and polarity of the lens can 
be changed in vivo  (Coulombre and Coulombre, 1969). 
Using similar techniques, polarity of the chick tectum 

and the role of the tectum in retinal differentiation and 
apoptosis has been defined (Cohen et al., 1989; Ichijo 
et al., 1990; Itasaki et al., 1991; de Curtis et al., 1993; Le 
Douarin, 1993; Nakamura et al., 1994; Yamagata et al.,
1995; Cook et al., 1998; Borsello et al., 2002). Finally, 
there have also been several studies in which the inter-
action between the developing cornea and lens has been 
documented (Zinn, 1970; Lwigale et al., 2007). 

  Bead Implantation 

 As investigators began overexpression/misexpression 
studies, the use of the chick as a model system was 
stymied for a short period of time because the cells 
of the chick were too small to inject DNA or mRNA 
(Stern, 2005). This led to the use of either grafts of 
transfected cells or insertion of inert beads to deliver 
factors to a given tissue. Acrylic, ethylene/vinyl ace-
tate copolymer or agarose beads were used that had 
high affinity for many different molecules, and could 
slowly release the bound factors. Beads have been 
used to deliver a variety of growth factors to the devel-
oping eyefield and/or eye. One of the best known 
studies of this type is one in which the phenomenon 
of RPE transdifferentiation into retina was described 
by Park and Hollenberg (1989). Following removal of 
the retina, RPE treated with beads soaked in fibroblast 
growth factor (FGF) can generate a new retina (Park 
and Hollenberg, 1989; 1991; Spence et al., 2004; 2007b). 
Beads have also been used to deliver growth factors in 
a number of studies to the developing forebrain and 
eye cup to affect eyefield and/or optic cup develop-
ment (Ohkubo et al., 2002). Further, beads can be used 
to deliver other substances to the developing eye, such 
as function-blocking antibodies or inhibitors of signal-
ing pathways (Martinez-Morales et al., 2005; Spence et
al., 2007a). Also explant cultures have been developed 
to allow optic vesicles to be exposed to growth factors 
(Trousse et al., 2001). 

  Chemical Genetics 

 Chemical genetics is defined as the use of small mol-
ecules to affect biological events (Yeh et al., 2003). This 
section includes examples of chemicals that have been 
used in ovo  to specifically stimulate or inhibit various 
signaling pathways. The strength of the chick sys-
tem here is that various reagents can be added drop-
wise to the egg, injected intravenously for systemic 
uptake, or injected into the optic cup at various stages. 
Further, multiple additions or injections over time can 
be easily done. While the list of chemicals that may be 
added is endless, we would like to consider molecules 
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that interfere with two signaling pathways: the sonic 
hedgehog (Shh) and FGF pathways. 

 Cyclopamine, a chemical originally identified as a 
teratogen, inhibits Shh signaling. Exposure of embryos 
to this chemical results in cyclopia stemming from the 
improper patterning in the ventral forebrain (Coventry 
et al., 1998). Recent studies have compared the effects 
of cyclopamine to a cholesterol synthesis inhibitor  in
ovo  to show that the mechanism of action within the 
forebrain was due to the direct antagonism of the Shh 
pathway rather than effects on cholesterol linkage of 
the Shh molecule (Incardona et al., 1998). In a sepa-
rate study, cyclopamine was injected directly into the 
developing eye cup to show the effects of decreased 
Shh signaling on axonal pathfinding within the retina 
(Kolpak et al., 2005). On the other hand, SU5402 is a 
member of a family of FGF signaling inhibitors that 
bind specifically to the active sites of FGFR kinase 
domains (Mohammadi et al., 1997). SU5402 has been 
used in ovo  to block ganglion cell differentiation and 
lens fiber elongation (McCabe et al., 1999; Huang et al.,
2003). Another more potent FGFR inhibitor PD173074 
has been used to dissect the effects of FGF signaling 
during chick retina regeneration (Spence et al., 2004; 
2007a,b). These small molecules and many others have 
an enormous range of possibilities and combinations 
that can be tested.  

  Embryonic Cultures, Explants, Single Cell, 
Recombined Tissue 

 Culture systems are widely used to determine the 
effect of growth factors, toxins, inhibitors, and any 
other substance in different types of cells or tissues, 
when a certain amount of precision is required to 
ensure that all the cells are treated with a specific con-
centration of the given factor. Several types of chick 
culture systems have been used to tease out mecha-
nisms of differentiation in the retina, namely eye cup 
cultures, explants, dispersed cell culture (low and high 
density), reaggregation of dispersed cells, and immor-
talized cell lines. We would like to consider three of 
the most common types of questions that have been 
addressed using chick retinal, RPE, lens, and corneal 
cultures and give a few examples of each from the 
literature. (1) How does one cell type or tissue affect 
the differentiation/development of another? In the 
first example of this type of study, Fuhrmann  et al.
(2000) (showed that a signal from extraocular mes-
enchyme upregulated RPE markers and downregu-
lated retinal markers in optic cup cultures. In a second 
example, the innervation of the developing cornea by 
the trigeminal nerve was shown to be dependent on 
the expression of semaphorin A in the adjacent lens 

epithelium (Lwigale et al., 2007). (2) How do cells from 
the same tissue influence one another during devel-
opment? This question has been addressed using the 
various culture techniques listed above in a variety 
of permutations. For instance, low density cultures 
have been used to show that the stage at which reti-
nal progenitor cells are cultured, determines the type 
of retinal cell they will form  in vitro,  demonstrating 
the importance of the in vivo  environment in dictat-
ing cell fate (Adler et al., 1989; Repka et al., 1992a,b; 
Belecky-Adams et al., 1996). Other studies have used 
heterochronic cultures to investigate the effects of ear-
lier born cells on progenitor cell differentiation (Waid 
et al., 1998), and the importance of cell–cell commu-
nication in retinal differentiation (Austin et al., 1995). 
Finally, work from Layer and colleagues has explored 
the possibility of reconstituting the laminar forma-
tion and differentiation of the retina using reaggre-
gation cultures of dispersed retinal cells (Rothermel 
et al., 1997; 2006). (3) How does treatment of cells at 
various stages of development with growth factors 
affect development of retinal progenitors? There are 
an enormous range of growth factors that have been 
used in cultures of chick retina, including FGFs, BMPs, 
activins, CNTF, Shh, and NGF to mention only a few 
(Pittack et al., 1991; Fuhrmann et al., 1995; Matsuo et al.,
1997; Belecky-Adams et al., 1999; Frade, 2000; Cirillo 
et al., 2001; Le et al., 2001; Zhang et al., 2001; Belecky-
Adams et al., 2002; Nakagawa et al., 2003; Kolpak et al.,
2005; Sehgal et al., 2006).  

  DNA Transfer 

 In this section, we will consider several techniques 
that enable the investigator to introduce DNA, in the 
form of expression vectors, RNA interfering molecules 
(including morpholinos, siRNA, dsRNA, and shRNA) 
and reporter constructs to test cis-acting sequences in 
non-coding regions of the genome. Several techniques 
will be included in this section, including retroviral 
transfer, electroporation, and transfection using lipid-
based reagents. 

 The chicken-specific replication competent ret-
rovirus (RCAS) has been used for misexpression of 
genes in the chick since the late 1980s, and was the 
first technical revolution that allowed the introduc-
tion of exogenous genes into chick cells in ovo  (Hughes 
et al., 1984a,b; Morgan et al., 1992; Riddle et al., 1993). 
This retrovirus is derived from the SR-A strain of the 
Rous sarcoma (src) virus, and was made by delet-
ing sequences that encode the src gene. Deletion 
of this portion of the viral genome allows inser-
tions of genes of interest at this site (Hughes et al.,
1984a). It has become so commonly used in the chick 



system that it has its own website (  http://www.
retrovirus.info/RCAS  ), run by one of the originators 
of the RCAS retrovirus, Stephen Hughes (Hughes 
et al., 1984a,b). Since its arrival on the scene, there have 
been various modifications to the virus that allow it to 
be used in different ways. For instance, adaptor plas-
mids were made to aid in the insertion of exogenous 
genes into the RCAS retrovirus, mutations have been 
made in the genes that encode envelope proteins that 
allow investigators to target host range, other dele-
tions have been made in viral genes to allow larger 
insertions, mutations to the long terminal repeat (LTR) 
enhancer allow the inserted gene to be expressed at 
different levels, and tetracycline inducible elements 
have been added to the RCAS A retrovirus so that 
expression of genes inserted into the retrovirus can be 
induced (Hughes et al., 1987; Greenhouse et al., 1988; 
Sato et al., 2002). The RCAS system has been used by 
many to advance our understanding of the visual 
system, for example, the retrovirus has been used to 
study patterning (Nakamoto et al., 1996; Schulte et al.,
1999; Sakuta et al., 2001; Adler et al., 2002; Kim et al.,
2006), mitosis (Crisanti et al., 2001), axonal pathfind-
ing (Kolpak et al., 2005), differentiation (Blancher et al.,
1996; Jiang et al., 1998; Ogino et al., 1998; Yan et al.,
2000a; Li et al., 2001; Liu et al., 2001; Yan et al., 2001; 
Esteve et al., 2003; Canger et al., 2004; Cho et al., 2006; 
Moreira et al., 2006), survival (Pimentel et al., 2000), 
and regeneration (Spence et al., 2004; Spence et al.,
2007a,b; Haynes et al., 2007). 

 The RCAS retrovirus also has several drawbacks 
associated with it, including (1) the upper restriction 
on the size of insertions to the viral coding sequence is 
about 2       Kb, so that it is unlikely that one could intro-
duce more than one gene into the retrovirus, (2) it can-
not be used to target post-mitotic cells, (3) there is an 
increase in the cost and time associated with making 
a retroviral stock, (4) it takes between 16 and 24       h to 
get expression of the viral proteins  in ovo , and (5) the 
investigator must use the substantially more expen-
sive virus-free eggs. 

 Few technical advances have made the chick system 
more amenable to the types of studies performed today 
than electroporation. The basic idea behind electropo-
ration is that an electrical pulse delivered by electrodes 
placed in the tissue disrupts the cell membranes, allow-
ing DNA to enter cells. The negatively charged DNA will 
move toward the anode side of the electrode, resulting 
in transfection of tissue on the side of the anode. There 
have been a raft of articles discussing in ovo  electropora-
tion and the best parameters to use to enhance survival
and increase transfection efficiency (Muramatsu et al.,
1997; Itasaki et al., 1999; Nakamura et al., 2000; Yasuda 
et al., 2000; Yasugi et al., 2000; Nakamura et al., 2001; 

Swartz et al., 2001; Katahira et al., 2003; Chen et al.,
2004; Krull, 2004; Nakamura et al., 2004; Uchikawa 
et al., 2004; Sato et al., 2007). Several investigators have 
also determined how to introduce various types of 
interfering molecules into the developing chick using 
electroporation or viruses, making knock-down experi-
ments feasible (Hu et al., 2002; Katahira et al., 2003; Kos 
et al., 2003; Pekarik et al., 2003; Chesnutt et al., 2004; 
Rao et al., 2004; Hernandez et al., 2005; Canto-Soler 
and Adler, 2006; Harpavat and Cepko, 2006; Watanabe 
et al., 2007). The use of electroporation has several 
advantages over the use of viruses to introduce DNA, 
such as there is no longer a need to clone sequences into 
the retroviral plasmid, no size restriction on insertions 
to the expression vector, no need to expend the effort 
and funds in making a viral stock with which to infect 
tissues, and no need to purchase the more expensive 
virus-free eggs. Further, because directionality of the 
transfection can be controlled somewhat by placement 
of the electrodes, the electroporation method has more 
precision over where DNA can be targeted. Introducing 
DNA via electroporation is not limited to dividing cells, 
as is the retrovirus, and the expression of plasmids intro-
duced by electroporation is generally detectable within 
a few hours post-electroporation. One limitation that 
electroporation does have is that the DNA is not incor-
porated into the genome; hence its expression is lost 
over time. A recent advancement in this area is the sta-
ble incorporation of genes into the genome through the 
co-electroporation of a transposon-containing expres-
sion vector with a separate expression vector containing 
a transposase (Sato et al., 2007). This combination led to 
the persistence of the electroporated green fluorescent 
protein (GFP) marker. This has also been combined with 
the tetracycline inducible elements, such that transgenes 
could be introduced fairly early in development, when 
accessibility of the embryo is at its highest, and turned 
on later in development by addition of tetracycline (Sato 
et al., 2007). Until recently, electroporation had been used 
in very early embryos, primarily because later embryos 
turn inside such that the head is no longer visible and 
the embryo becomes covered with a dense vasculature. 
Two changes have been made recently to address intro-
duction of genes into older embryos via electroporation. 
The first is the ex ovo  electroporation of embryos grown 
in petri dishes and the second advancement is that of 
electroporation in hatchlings (Luo et al., 2005; Yamaguchi 
et al., 2007). 

 Last, there have been a variety of methods used to 
transfect cells with lipid-based technology (Iwakiri 
et al., 2005; Muramatsu et al., 1997; Yasugi et al., 2000; 
Decastro et al., 2006). The basis of this technique is the 
ability of liposomes loaded with DNA to fuse with cel-
lular membranes and deliver their cargo to the cytosol. 
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This method has been used to generate chimeric chick 
embryos (Fraser et al., 1993), and to transfect a number 
of tissues (Brazolot et al., 1991; Demeneix et al., 1994; 
Rosenblum et al., 1995; Decastro et al., 2006). While 
most early lipid delivery systems were not as efficient 
as electroporation in the developing embryo (Decastro 
et al., 2006), enhanced Lipofectamine  delivery through 
the addition of disulfide linked pegylated lipid has 
lead to a substantial increase in the transient transfec-
tion of a variety of tissues, including the neural tube 
and optic cup. 

 It is unlikely that these are the last of the advances 
for delivery of genes and other molecules into the 
developing and regenerating chick system (Kawakami 
et al., 2008). One promising technology being devel-
oped is that of sonication (Ohta et al., 2003; Fischer 
et al., 2006). There have been some recent advances in 
 “ sonoporation ”  which make transfections  in vivo  more 
efficient and more likely to be used in the future (Gvili 
et al., 2007; Saito et al., 2007).  

  Disadvantages of the Chick Embryo 

 There are also some disadvantages of the chick sys-
tem. Until a few years ago, the biggest disadvantage 
of the system was the inability to genetically modify 

chickens (Stern, 2005). However, this difficulty has 
been overcome by several groups, and the prac-
tice of making transgenic chickens will soon become 
more standardized and catch up with the powerful 
techniques currently available for other models such 
mice, zebrafish, and Xenopus  tropicalis (Mozdziak 
et al., 2003; Koo et al., 2004; 2006; Mozdziak and Petitte, 
2004; 2006; Kwon et al., 2004; Chapman et al., 2005). 
Another weakness that the chick model has been 
associated with is the lack of natural mutants and/or 
a long-term storage facility for such mutants. There 
are some mutants available, as has been reviewed 
recently, however, even some of those few are in dan-
ger of being lost (Delany, 2004). Coupled with this is 
the challenge of chemical mutagenesis in chickens. 
It is unlikely that the chick will ever be able to take 
advantage of mutagenesis screening that is common 
in models such as Drosophila  and zebrafish. 

 CHICK RETINA REGENERATION 

  Introduction 

 As mentioned earlier, one of the great advantages of 
working with the embryonic chick eye is that the retina 

FIGURE 8.3    (A) A cross section from a regenerating eye 3 days post-retinectomy showing regeneration from both the retinal stem/pro-
genitor cells (cr) and transdifferentiation of the RPE (td) in the presence of FGF2. (B and C) A cross section from a regenerating eye 3 days 
post-retinectomy showing regeneration from the retina stem/progenitor cells (cr) when the Shh (RCAS Shh) (B) or the BMP (RCAS BMPRIA)
(C) pathway is constitutively activated. (D–F) A cross section from a regenerating eye at 3 days post-retinectomy showing the lack of regenera-
tion in the presence of RCAS Shh and PD173074, an inhibitor of the FGF pathway (D), RCAS BMPRIA      �      PD173074 (E), and RCAS noggin, an 
inhibitor of the BMP pathway, and FGF2 (F).              

FGF2

td
L cr

(A)

Rcas Shh

L

cr

(B)

L

cr

(C)

Rcas BMPRIA

Rcas-Shh� 
PD173074 L

B

(D)

L

Rcas SMRPIA �
PD173074

B

(E)

L

(F)

Rcas Noggin �
FGF2



can be repaired or replaced if damaged or removed. 
The accessibility to the embryo for microsurgery com-
bined with the availability of molecular tools in the 
chick has made this a great system to study and dissect 
the early molecular events that take place during ret-
ina regeneration. The chick genome was also recently 
sequenced (Wallis et al., 2004) and this provides a vast 
range of possibilities to study the early stages of retina 
regeneration, including the use of gene array technol-
ogy to identify critical genes regulated during chick 
retina regeneration. 

 The embryonic chick can regenerate its retina via two 
modes. One requires the activation of stem/progenitor 
cells present in the ciliary margin, while the other 
involves the use of the classic process of transdifferenti-
ation ( Fig. 8.2 ). The phenomenon of retina regeneration 
in the embryonic chick has been observed since the 
early 1900s, however, it was not until  Coulombre and 
Coulombre (1965)  that the process of retina regenera-
tion was described in more detail. Park and Hollenberg 
(1989, 1991) discovered that in order for any retina 
regeneration to take place a source of FGF had to be 
present. Recently, we have shown that other signaling 
pathways including the hedgehog (Hh) and bone mor-
phogenetic protein (BMP) pathways regulate the proc-
ess of retina regeneration ( Spence et al. , 2004, 2007a, b ;
 Haynes  et al. , 2007 ). We will discuss the mechanisms by 
which each mode of retina regeneration is regulated. 

  Regeneration by Stem/progenitor Cell 
Activation

 Regeneration from the stem/progenitor cells in the cili-
ary margin requires an induction process whereby the 
stem/progenitor cells are activated to proliferate and dif-
ferentiate into the retinal cell types. The stem/progenitor 
cells in this region are used by the embryo to provide for 
the continuous growth for the retina, however, there is 
always a population of cells that remain undifferentiated 
and will not spontaneously respond to injury. However, 
after removal of the retina, the stem/progenitor cells can 
be activated with exogenous growth factors to proliferate 
and differentiate into each of the retinal cell types reform-
ing a complete retina in about 1 week (Spence  et al. , 2004; 
Fig. 8.2(C) ). Activation of the retinal stem/progenitor 
cells is most robust if the retina is removed on embry-
onic day 4, although some activation does occur at later 
stages but at a reduced level. 

  Role of FGF/MAPK Signaling Pathway 

 As mentioned, FGF was the first exogenous growth fac-
tor to be identified as an inducer of retina regeneration 

in the embryonic chick. Park and Hollenberg (1991) 
used FGF1 to induce chick retina regeneration from 
the stem/progenitor cells of the ciliary margin. More 
recently, we have used FGF2 (which was originally 
used by Park and Hollenberg (1989) to induce transdif-
ferentiation in the chick retina) and studied its ability to 
activate the retinal stem/progenitor cells ( Spence et al. , 
2004, 2007a ) (         Fig. 8.2(C), 3(A) . FGF2 can activate several 
signaling pathways within the cell, but the activation of 
the mitogen-activated kinase (MAPK) signaling cascade 
by FGF2 is critical for retina regeneration since the addi-
tion of an inhibitor for this pathway in the presence of 
FGF2 results in a significant reduction in regeneration 
( Spence  et al. , 2007a ). The activation of MAPK by FGF2 
induces proliferation of the retinal stem/progenitor cells 
and is required for cell survival ( Spence et al. , 2007a ). 

  Role of Shh Signaling Pathway 

 Other signaling pathways are also involved in the reg-
ulation of retina regeneration from the ciliary margin. 
One of these pathways is the Shh pathway. Like, FGF2, 
overexpression of Shh has been shown to induce ret-
ina regeneration from the stem/progenitor cells ( Fig.
8.3(B)   ). However, induction of regeneration by either 
of these molecules is dependent on the other pathway 
being functional, since reduced regeneration from the 
ciliary margin occurs in eyes treated with either FGF2 
and an inhibitor of the Shh pathway or a virus over-
expressing Shh and an inhibitor of the FGF pathway 
(       Fig. 8.3(D) and 8.4(A) ; Spence et al. , 2004). 

 Detailed studies have been done to dissect the role 
of FGF2 and Shh in retina regeneration. It has been 
found that Shh can induce regeneration from the cili-
ary margin by activating transcription of FGF ligands 
and FGF receptors thereby inducing proliferation 
through the FGF/MAPK pathway described above 
( Spence  et al. , 2007a ). A functional Shh pathway is also 
necessary because Shh works with FGF2 to promote 
cell survival and Shh alone is required for the mainte-
nance of progenitor cell identity ( Spence et al. , 2007a ). 
In addition to stem/progenitor cell induction, overex-
pression of Shh has been shown to reduce the number 
of regenerating ganglion cells, demonstrating a role 
for Shh in retina differentiation (Spence  et al. , 2004).  

  Role of BMP Signaling Pathway 

 In addition to FGF2 and Shh, BMP has also been 
shown to induce retina regeneration from the cili-
ary margin ( Fig. 8.3(C) ) ( Haynes et al. , 2007 ). BMP can 
also activate the FGF/MAPK pathway by increasing 
the transcription of FGF receptors. The BMP pathway 
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and the FGF/MAPK pathway are both necessary for 
proliferation of retinal progenitor cells during the ini-
tial induction period of regeneration because if one 
pathway is blocked, proliferation and therefore regen-
eration does not occur ( Fig. 8.3(E) and (F) ). During 
this initial induction period of regeneration BMP 
activates the canonical BMP pathway (via SMADs). 
However, during the later stages of regeneration, BMP 
switches and activates a non-canonical BMP pathway 
(via TAK1) which leads to p38 activation and apop-
tosis. Inhibition of p38 is necessary to maintain BMP-
induced regeneration otherwise the regenerated retina 
will undergo massive cell death. Even the  addition 
of ectopic FGF2 does not prevent the high level of cell 
death because BMP decreases the transcription of FGF 
receptors at this stage. There is some evidence that BMP 
also regulates the differentiation of ganglion cells and 
the cells of the inner nuclear layer because these cells 
do not form in the absence of BMP ( Haynes  et al. , 2007 ). 

 While we are still deciphering how FGF2, Shh, and 
BMP pathways work together as well as in coopera-
tion with other pathways yet to be studied, it is clear 
that functional FGF2, Shh, and BMP pathways are nec-
essary for induction of regeneration from the stem/
progenitor cells present in the anterior region of the 
eye. Further studies will help delineate whether the 
pathways work in concert or parallel to regulate pro-
liferation, cell survival, and differentiation. 

  Regeneration by Transdifferentiation 

   An In Vivo Model  

 The second mode of regeneration that takes place in 
the chick retina is via the process of transdifferen-
tiation. When a complete retinectomy is performed in 
embryonic day 4 chick eyes, and an exogenous source 
of FGF is introduced in the eye, the retinal pigmented 
epithelium (RPE) undergoes a reprogramming where 
the cells dedifferentiate, losing their pigment and 
become “ embryonic-like. ”  These cells enter the cell 
cycle and build a neuroepithelium which will eventu-
ally differentiate to give rise to the newly regenerated 
retina. This process of transdifferentiation has been 
described histologically ( Coulombre and Coulombre, 
1965 ; Park and Hollenberg, 1989; Spence  et al. , 2004) as 
well as with cell and molecular markers ( Spence  et al. , 
2004; 2007b ). 

 Other species can also regenerate their retina 
via transdifferentiation during early stages of their 
development (review in  Lopashov and Stroeva, 1964 ;
Mitashov, 1996, 1997), however, studying this process
in vivo  can be challenging in animals such as mice or 

even fish as these animal models are either not eas-
ily accessible or are too small to manipulate dur-
ing early stages of their development. Some anurans 
such as newts have unsurpassed regeneration abili-
ties and can regenerate their retina via transdifferen-
tiation throughout their lifetime. A month and a half 
after retina removal, a complete functional retina is 
restored (Mitashov, 1996, 1997; Del Rio-Tsonis and 
Tsonis, 2003; Tsonis and Del Rio-Tsonis, 2004; Chapter 
7)  . These virtues qualifies the newt as one of the best 
animal models to study transdifferentiation; how-
ever, the lack of molecular tools for newt studies has 
greatly limited the use of this model for dissecting 
the molecular regulation of transdifferentiation. The 
availability of molecular tools in the embryonic chick 
as well as the fast rate of retina regeneration (it only 
takes 7 days after retina removal to obtain a complete 
laminated retina with all the mayor retinal cell types 
present), qualifies this animal as the preferred model 
for the dissection of molecular mechanisms during 
RPE to retina transdifferentiation. 

 The embryonic chick eye only provides a good 
model to study early events of retina regeneration and 
transdifferentiation but will not address the restora-
tion of vision since the transdifferentiated retina does 
eventually degenerate due to the lack of RPE, which 
fails to restore itself during the process of transdiffren-
tiation (Coulombre and Coulombre, 1964; Park and 
Hollengberg, 1989). The lack of RPE in the transdif-
ferentiated retina accounts for its reverse orientation 
when compared to the original retina or even to the 
one that regenerates via stem/progenitor cell activa-
tion (see  Figure 8.2(C) ). 

  A window of transdifferentiation 

 It is interesting to note that there is a small win-
dow during chick eye development where the RPE 
is competent to transdifferentiate (Coulombre and 
Coulombre, 1964; Park and Hollengberg, 1989). It is 
feasible to remove the retina as early as E3.5 and if a 
source FGF is added then, the RPE will transdiffer-
entiate into retina. This competence is present until 
about E4.5. During this time, the RPE expresses micro-
pthalmia (Mitf) and has stopped expressing Pax-6 
( Spence  et al. , 2007b ). In the absence of neural retina 
(NR), RPE transdifferentiation in chick eyes has not 
been reported after E5  in vivo  with any known treat-
ment. However, RPE to retina transdifferentiation 
has been reported in developing eyes when Pax-6 is 
overexpressed in the RPE of chick eyes up to stage 
35 (Azuma et al. , 2005), or in  in vitro  E5-6 (HH stages 
28-29) explant cultures where activin/ TGF-beta/



nodal receptors are inhibited in the presence of FGF 
(Sakami et al. , 2008), or even in RPE explants of post-
hatched chicks transfected with Optx2 (Toy  et al. , 
1998).

  Dissecting the molecular pathway of RPE 
transdifferentiation 

 There are several molecular players involved in 
the process of transdifferentiation that have been 
unraveled by a disruption on their pathway or func-
tion during either retina development or regeneration. 
Two different groups of molecules have been identified 
in the saga of transdifferentiation. On one side, are the 
genes that protect the RPE phenotype and on the other, 
the ones that define the retina phenotype. Mitf (Mochii 
et al. , 1998a; b; Planque  et al. , 1999; 2001; 2004; Bumsted 
and Barnstable, 2000; Nguyen and Arnheiter, 2000), Otx 
(Martinez-Morales et al. , 2001; 2003; 2004; Sakami  et al. , 

2005), Wnt13 (Fuhrmann et al. , 2000), BMPs ( Muller 
et al. , 2007 ;), Shh (Zhang and Yang, 2001; Perron  et al. ,
2003; Spence et al. , 2004) and activin (Fuhrmann 
et al. , 2000; Sakami  et al. , 2008) are associated with the 
induction and maintenance of the RPE, whereas Pax-
6 (Belecky-Adams et al. , 1997; reviewed in Levine and 
Green, 2004; Chx10 (Rowan  et al. , 2004; Horsford  et
al. , 2005), Msx-2 ( Holme et al. , 2000 ), Optx2 (Toy  et al. , 
1998), Neuro D (reviewed in  Yan  et al. , 2005 ) and FGF/
MAPK (Vogel-Höpker  et al. , 2000; Galy  et al. , 2002; 
and reviewed in Yang  et al. , 2004) are associated with 
retina. 

 In chicks, Pax-6 overexpression in the RPE is suffi-
cient for the induction of transdifferentiation during ret-
ina regeneration ( Spence et al. , 2007b ) ( Fig. 8.4(C)   ) and 
even during development (Azuma et al. , 2005) while 
Mitf overexpression is sufficient to protect the RPE from 
transdifferentiating during FGF-induced retina regener-
ation ( Spence et al. , 2007b ) ( Fig. 8.4(D) and (E) ). 

FIGURE 8.4    (A–C) A cross section of a regenerating eye at 3 days post-retinectomy (A, C) or 4 days post-retinectomy (B) showing transdif-
ferentiation of RPE induced by KAAD, an inhibitor of the Shh pathway, and FGF2 (A), activation of MAPK pathway (RCAS MekDD (B), and 
overexpression of Pax-6 (RCAS Pax-6) (C). (D and E) Inhibition of transdifferentiation by overexpression of Mitf (RCAS Mitf) in the presence of 
FGF2 is shown by immunohistochemistry on a cross section of a regenerating eye at 3 days post-retinectomy using an antibody for Mitf (red) 
and an antibody for a protein from the viral coat (green). Yellow cells show the location of infected RPE (E). Transdifferentiation only occurs in 
area of the RPE that are not infected (td). DIC is shown in D. 

E7

I

td

(A)

KAAD
� FGF2

I

td(B)

E8 RCAS MEKDD

I

E7 RCAS Pax-6

td

(C)

E7

I

td

(D)

RCAS-Mitf
FGF2

E7

td

(E)

RCAS-Mitf
FGF2

CHICK RETINA REGENERATION 111



112 8. THE CHICK AS A MODEL FOR RETINA DEVELOPMENT AND REGENERATION

   An In Vitro Model  

 The embryonic chick has been used for the study of 
transdifferentiatiation by several researchers using  in
vitro  systems including isolated RPE cells or explants. 

  Transdifferentiation of RPE to NR 

  RPE explants 
 RPE cells have been cultured from chick embryos and 
tested for their ability to transdifferentiate into NR cells 
( Pittack  et al. , 1991 ; Guillemot and Cepko, 1992). If the 
RPE is removed from the chick at E4.5-E5.5 (HH stages 
24-28), dissociated and treated with FGF, the cultured 
RPE cells lose their pigment but do not express mark-
ers of neural cells ( Pittack  et al. , 1991 ). However, if 
the RPE cells are not dissociated, but instead left as 
an intact sheet of cells and treated with FGF, the RPE 
cells will lose their pigment and express markers 
indicative of retinal progenitor cells and even express 
markers of NR cells ( Pittack  et al. , 1991 ; Guillemot and 
Cepko, 1992). Recently, Sakami  et al.  (2008), had used 
this explant system to test the potential of activin to 
block FGF-induced RPE transdifferentiation using E4 
explants, and have shown that when inhibiting the 
activin/TGF-beta/nodal pathway, E5 incompetent 
RPE can transdifferentiate. Interestingly, according to 
Zhou and Opas (1994), FGF does not act on the fully 
differentiated RPE, but only on those cells that have 
been stimulated to change their identity, probably via 
changes in their adhesive status. In addition, once FGF 
is able to direct RPE explants to transdifferentiate, the 
substratum where the cells are grown dictates their 
differentiation ( Opas and Dziak, 1994 ). Transfecting 
RPE explants with key genes is another way to induce 
transdifferentiation effects such as the ones incurred by 
transfecting Optx2 unto E7-E8 as well as post-hatched 
chick RPE explants (Toy  et al. , 1998). 

  RPE isolated cultures 
 While the dissociated RPE cells did not express 
 neuronal markers when cultured from chick embryos 
at E4.5-E5.5, they did begin the transdifferentiation 
process by losing their pigment if treated with FGF2. 
Additional studies of these cultured RPE cells revealed 
that an overexpression of Mitf, a  transcription factor
involved in defining RPE identity, inhibited FGF from 
triggering transdifferentiation of the RPE (Mochii 
et al. , 1998b). Furthermore, addition of Msx-2, a 
gene only expressed in NR, to the cultured RPE cells 
caused a decrease in Mitf and an increase in the neu-
ronal marker, class III beta-tubulin ( Holme  et al. , 2000 ). 
Therefore, transdifferentiation of cultured RPE cells 

from E4.5-E5.5 into neuronal cells requires the down-
regulation of RPE genes, such as Mitf, and/or the 
upregulation of neuronal specific genes, such as Msx-2. 

 RPE cells cultured at a slightly later day in develop-
ment, at E6, have also been used to study the ability of 
RPE to transdifferentiate into NR. Addition of FGF to 
cultured E6 RPE cells did result in an increase in cells 
expressing an early ganglion cell marker, RA4, but there 
was not a transdifferentiation to neuronal morphology. 
However, addition of NeuroD did result in a transdif-
ferentiation of E6 RPE cells to photoreceptors ( Yan and 
Wang, 1998 ; Yan and Wang, 2000a; b) while the addi-
tion of neurogenin 2 (ngn2) resulted in transdifferen-
tiation of the E6 RPE cells to photoreceptors and retinal 
 ganglion cells (Yan  et al. , 2001). Cath5 and NSCL1 were 
also able to induce transdifferentiation of E6 RPE cells 
into retinal ganglion cells (Ma  et al. , 2004; Xie  et al. , 
2004). Studying the induction potential of RPE cells 
in vitro  will be beneficial in deciphering the molecules 
needed to induce transdifferentiation of the RPE  in vivo
at both E4 and at later stages. 

  Transdifferentiation of NR to RPE 

 NR from early chick embryos also possesses the plas-
ticity to transdifferentiate into RPE  in vitro . Studies 
performed by Opas et al.  (2001) have shown that disso-
ciated 6-day-old embryonic NR can transdifferentiate 
into RPE spontaneously. These pigmented transdiffer-
entiating cells express RPE-specific protein, eRPEAG 
and lack of expression of the neural cell adhesion mol-
ecule, NCAM (Opas et al. , 2001).   

   In Vitro–In Vivo 

 RPE cells cultured  in vitro  have also been transplanted 
into the embryonic chick eyes and shown to integrate 
into the developing eye. Cells cultured from the devel-
oping RPE of an E5.5 chick embryo and grown until 
they develop the morphology of RPE cells will inte-
grate into the developing RPE when transplanted into 
the embryonic chick at E11-E18 (Liang  et al. , 2006). 
However, if, before transplantation, the cultured 
RPE cells are treated with an RCAS virus expressing 
NeuroD, which has been shown to be important for 
photoreceptor development ( Yan and Wang, 1998 ),
the infected RPE cells will begin to express visinin, 
an early marker for cone photoreceptors, and inte-
grate into the outer nuclear layer of the retina indica-
tive of transdifferentiation of the transplanted RPE 
cells into photoreceptor cells (Liang  et al. , 2006). These 
transplanted cells continue the differentiation process 
expressing advanced photoreceptor markers such as 
opsin and extend axons into the inner nuclear layer 



or ganglion cell layer. Although these transdifferenti-
ated photoreceptor cells do integrate into the correct 
location and express the appropriate markers for pho-
toreceptors, the photoreceptors are not all organized 
perpendicular to the RPE and some advanced mark-
ers are expressed in the cell body instead of the axon 
(Liang et al. , 2006). This is believed to occur because 
there is not an intimate association of the transplanted 
cells with the developing RPE that is needed for 
proper organizational cues. Despite the organizational 
problems that need to be solved, these studies involv-
ing the chick embryo provide hope that transplanted 
RPE cells can someday be directed to differentiate 
in vivo  to replace lost or damaged photoreceptors.   

  Using the Embryonic Chick Eye to Probe for 
Retina Repair Potential of Mammalian Cells 

 Embryonic stem cells isolated from the mammalian 
blastocyst and retinal stem cells isolated from rodents 
and post-mortem humans have been cultured and 
directed to differentiate into ocular structures includ-
ing lens (Oota, et al. , 2003; Takahashi,  et al. , 2006), ret-
ina (Zhao et al. , 2002; Hirano  et al. , 2003; Haruta, 2005; 
Banin, et al. , 2006; Lamba,  et al. , 2006; Limb,  et al. , 2006; 
 Zhao,  et al. , 2006 , and  Vugler,  et al. , 2007 ) and RPE 
(Haruta,  et al. , 2004;  Klimanskaya et al. , 2004 ; Aoki, 
et al. , 2006; and Takahashi  et al. , 2006). The embryonic 
chick has proven to be an excellent model to deter-
mine the ability of these stem cells to integrate and 
differentiate  in vivo  ( Coles  et al. , 2004 ; Aoki  et al. , 2006). 

  Embryonic Stem Cells 

 Mouse embryonic stem cells incubated with basic FGF, 
cholera toxin, dexamethasone and Wnt2b resulted in 
these stem cells expressing retinal precursor markers 
and differentiating into eye-like structures resembling 
lens, RPE, and retina with a high frequency within 
10–12 days in vitro  (Hirano  et al. , 2003 and Aoki  et al. , 
2006). When these eye-like structures were developed 
for 11 days  in vitro  and then transplanted into the 
developing chick eye, they most often migrated to the 
developing RPE layer and differentiated into mature 
RPE cells expressing the RPE marker, RPE65 (Aoki 
et al ., 2006). A few of these transplanted eye-like struc-
tures also expressed markers indicative of a ganglion 
cell lineage (Aoki et al. , 2006; 2007). Embryonic stem 
cell transplanted after only 6 days in culture also inte-
grated into the retina of the chick and were induced 
to form lens tissue or express markers of a ganglion 
cell lineage. Based on these studies, we can speculate 
that human embryonic stem cells have the potential to 

integrate into different tissues of the eye and differen-
tiate into functional cells of the lens, retina, and RPE if 
manipulated correctly. 

  Adult Stem cells 

 Retinal stem cells isolated from the ciliary margin of 
post-mortem human eyes were also tested for their 
potential to differentiate  in vivo  using the embryonic 
chick eye. These retinal stem cells were able to prolif-
erate and differentiate spontaneously into all retinal 
cell types when cultured  in vitro  although the addition 
of FGF, epidermal growth factor (EGF), and heparin 
increased the rate at which this occurred ( Coles  et al. , 
2004 ). These retinal stem cells were able to respond to 
environmental cues in the developing chick eye and 
express markers of ganglion and horizontal cells when 
transplanted at the time these cells would normally be 
developing in the chick eye ( Coles et al. , 2004 ). These 
studies show great promise for the future use of either 
embryonic or adult stem cells in the treatment of ret-
ina degenerative diseases. They also demonstrate the 
conservation between environmental cues in human 
and chicks making the chick a reliable model in which 
to study the potential of these cells. 

  The Post-hatch Chick and Its Potential 
Sources of Retina Repair 

  The Ciliary Margin 

 Although retinal stem/progenitor cells continue to 
proliferate for up to 3 weeks after hatching, they are 
unable to regenerate a complete retina even in the 
presence of exogenous growth factors (       Fischer and 
Reh, 2000 ). The ciliary margin which houses the reti-
nal stem/progenitor cells is composed of two distinct 
regions in the fully developed chicken eye. The more 
anterior structure is the ciliary body (CB) which is 
composed of two cellular layers, the pigmented epi-
thelial layer (PE) and the non-pigmented epithelial 
layer (NPE). Posterior to the CB at the tip of the NR 
is the ciliary marginal zone (CMZ) (         Fischer and Reh, 
2003a ). EGF, insulin, and IGF-1 increase proliferation 
and induce differentiation of the cells in the CMZ 
(           Fischer and Reh, 2000; 2003a ), whereas FGF2, insulin 
and EGF stimulate the cells of the NPE to proliferate 
and differentiate ( Fischer and Reh, 2003a ). While dif-
ferentiation can be induced, it is limited in the post-
hatch chick. Cells in the CMZ will differentiate into 
amacrine and bipolar cells and cells from the NPE 
differentiate to form amacrine and ganglion cells 
but other cell types including photoreceptors are not 
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formed by either group of cells. Regardless, retinal 
injury will not stimulate the cells of the CMZ to regen-
erate or repair the retina (       Fischer and Reh, 2000 ).  

  Müller Glia 

 Müller Glia are another possible source of regen-
eration in the post-hatch chick. Injection of toxins 
that cause cell death in certain retinal neurons or the 
addition of FGF2 or insulin causes the Müller Glia to 
proliferate, lose their characteristic Müller Glia mark-
ers and begin to express markers indicative of retinal 
progenitors ( Fischer and Reh, 2001 ;  Fischer  et al. , 2002 ; 
         Fischer and Reh, 2003b ). Many of the activated Müller 
Glia remain undifferentiated but a small percentage 
of them do differentiate into ganglion, amacrine, or 
bipolar cells ( Fischer and Reh, 2001 ; Fisher  et al. , 2002) 
under certain treatments. It has been shown that the 
Notch pathway is necessary for the dedifferentiation 
and proliferation of Müller Glia but if the Notch path-
way remains active, it will inhibit the differentiation of 
the newly formed progenitors into neural cells ( Hayes
et al. , 2007 ). In addition, NeuroD has been shown to 
induce dedifferentiation of Müller Glia cultured from 
toxin-damaged retina and promote the differentiation 
of immature photoreceptors ( Fischer  et al. , 2004 ).   

  CONCLUSION 

 The chick provides an excellent system to explore cell 
and molecular events during retina development and 
regeneration, including cell fate determination, stem 
and progenitor cell biology, cell differentiation, cell 
division, cell death, cell signaling, axon path finding, 
retinotectal projections and neural circuitry to name a 
few. It is an inexpensive, molecularly friendly system 
with many tools currently available.  
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