Mouse sperm extraction:

This method of extraction is used for acrosome reaction assays, immunocytochemistry and biochemical assays.

Collect two cauda epidydimus from one male, cut them 5 times and place them in a 2.0 ml eppendorf tube with 500 ul of warm Whittens-HEPES media (pH 7.2-7.4), incubate them at 37 C for 10-15 min (to allow sperm to swim out).

For Capacitation:

- -Prepare Whittens-HEPES media supplemented with NaHCO₃ 30 mM and BSA 10 mg/ml (Sigma A0281, fatty acid free). This is a capacitation media 2X.
- -Adjust pH to 7.2 7.4 with NaOH (one pellet per 1 ml H_2O mili-Q).
- -After swim out, add 1 volume of sperm to 1 volume of capacitation media and incubate at 37 C for 60-90 minutes.

Whittens HEPES Medium

Compound	Mol Weight	Final [mM]	Quantity (mg) for
			250 ml
NaCl	58.44	100	1461
KCl	74.55	4.4	87.6
KH ₂ PO ₄	136.1	1.2	40.8
MgSO ₄	120.4	1.2	36.1
Glucose (dextrose)	180.2	5.4	247.8
Pyruvic Acid	110	0.8	22.01
Lactic Acid (hemi-	109.1	4.8	130.92
Ca)			
HEPES (acid)	238.3	20	1191.5

Use Mili-Q water

Filter to sterilize and make 50 ml aliquots (use a fresh aliquot per experiment), store at 4 C.

Mouse acrosome reaction


- **-Ionophore induction**: After 1 h of capacitation, add 5-10uM of A23187, 8-Bromo (Calbiochem 100107, 2mM Stock) and incubate for additional 30 min.
- -Take 20ul of sperm and fix with 20ul of formalin 10% (5% final concentration) for 10min at RT. Smear 15ul of sperm on slides and let dry.
- Put the slide in the Coomasie blue staining solution for 1 min. Wash, add 10ul of PBS-Glycerol 50% and cover. Assess for AR under phase contrast microscope.

Alternatively:

- -For PNA staining permeabilize cells with 0.5% TritonX100 for 5 min at RT. Wash with PBS-T20.
- -Block with PBS+0.1%T20+1%BSA for 2 h.
- -Add PNA-Alexa 1/200 in blocking solution and incubate for 1 hour.
- -Wash with PBST20, mount and assess for AR under fluorescence microscope.

Coomasie solution:

0.22% (m/v) Coomasie in 50% Methanol+10% Acetic acid.

Nature Cell Biology 3, 499 - 502 (2001)

Mouse IVF protocol

Day 1: Inject females with 5IU(100µl) of PMSG at 21:00 hrs.

Day 3: Inject females with 5IU(100µl) of hCG at 21:00 hrs. (44-48 hrs after PMSG)

- a) Prepare Pyruvic acid 1000X concentrate (25 mg/ml) and add to media Wittens/HCO₃- and Wittens/HEPES (0.23 mM final concentration, 1ul of 1000X/ml of media)
- b) Add NaHCO₃:

```
* for + bicarb (22 mM) 1.9 mg/ml (9.2 mg/5 ml) (18.5 mg/10 ml)

* for + HEPES (7 mM) 0.59 mg/ml (2.9 mg/5 ml) (5.9 mg/10 ml)
```

- c) Add BSA to the Media 15 mg/ml BSA (we use BSA fatty acid free, SIGMA).
- d) Bring Wittens/HEPES media to pH 7.4
- e) Add 40 µl 1M NaOH to 10ml of HCO₃/BSA Media

Sterile filter using Nalgene 0.2 µm syringe filter into new 15 ml tube and place the Wittens/HCO3-/BSA media in incubator 5% CO2 overnight to equilibrate.

- Prepare wells NUNC with 500 ul of media covered with mineral oil. As many as sperm treatment you have (take in account that each well will have two epididymis).
- Prepare the wells for the dilutions with 450ul of media.
- Egg equilibration drop of 200ul.
- Prepare fertilization drops of 200ul each.
- Prepare post fertilization drops of 50ul each.

Day 4:

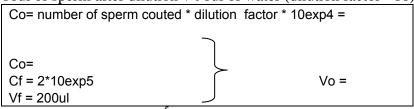
8:00 AM

- a) To warm Whittens-HEPES medium
- b) To prepare Whittens/HEPES/PVA medium containing 0.1% hyaluronidase (stock 100X stored at -20 °C) and place at 37°C.

10ul hyal + 1000ul Wittens/HEPES/PVA/BSA

9:00 – 9:30 AM Sperm collection

Sacrifice male (CD9 male, 3-8 months old). Clip cauda epididymes and upper portions of the vas deferens free from surrounding tissue. Using scissors and forceps, make 3-4 cuts across the epididymes and several cuts along the length of the vas deferens. *NOTE - sperm should not be stripped out of these tissues, but allowed to swim out instead (alternatively, squizze sperm out in 500 μ l Whitten's-HCO3 under oil using forceps and needle). Place the dish in 5% CO₂ incubator for 10-15 minutes. Dilute sperm 1:10 (50 μ l sperm + 450 μ l medium) in Whittens/HCO3/BSA. Be sure to remove sperm


from very top or sides of sperm drop to obtain the sperm with highest motility. Return the dish to the 5% CO₂ incubator and allow sperm to capacitate for 1-3 hrs prior to use for insemination.

9:30 AM Capacitation begins.

9:30 – 10:00 AM Counting of sperm

Add 10 μ l of the 1:10 sperm dilution to 90 μ l water, mix gently, and place 10 μ l of this under cover slip of hemocytometer. Count the number of sperm in the central 5 x 5 triple line-bordered box, or average the count in 4 boxes of that same size. Sperm count x dilution x 10^4 = number sperm/ml.

10ul of sperm after dilution + 90ul of water (dilution factor =10)

For fertilization use 2x10⁵ sperm/ml per drop

10:30 – 11:00AM Egg collection

Sacrifice females (CD9, 6-8 weeks old, superovulated with PMSG then hCG 44-48 hr later) between 12.5-14 hr after hCG administration. Remove oviducts and place in large drop of Whittens/HEPES/PVA to rinse off blood and loose tissue. Transfer oviducts individually to a drop of Whittens/HEPES/PVA + hyaluronidase and puncture oviduct to release cumulus/egg mass. Place oviduct aside, and proceed to the next oviduct. When all cumulus masses are in the hyaluronidase drop, use a large bore pipette to assist mechanically in dispersion of the cumulus cells. As soon as the eggs are free of cumulus cells, wash through 2-3 drops of Whittens/HEPES/PVA and then place into Whittens/HCO3/PVA incubation drops.

11:00 – 12:00 Fertilization starts

Place eggs in fertilization drops (Up to 200 eggs may be placed in a 500 μ l fertilization drop). Inseminate using sperm capacitated for 1-3 hrs from the 1:10 dilution in Whittens/HCO3/BSA to obtain a final concentration in the fertilization drop of 2 x 10^5 sperm/ml. Co-incubate eggs and sperm in a 5-5-90 chamber for 3-4 hr, and then wash sperm off eggs using a fine-bore pipet. After washing, place fertilized eggs in the post fertilization drops and incubate up to 6 to 7 hours total. In the same media the eggs can be incubated ON and then observe 2cell-stage.

Criteria to assign fertilized eggs:

- two polar bodies (at two hours) and two pronucleous (at four hours).
- Perivitelin sperm.
- Fused heads.
- Two cell-stage.

Whitten's IVF medium

Stock:

	<u>100 ml</u>	250 ml	500 ml	1 liter
109.5 mM NaCl	640 mg	1600 mg	3.2 g	6.4 g
4.7 mM KCl	35.6 mg	89 mg	178 mg	356 mg
1.2 mM KH ₂ PO ₄	16.2 mg	40.5 mg	81 mg	162 mg
1.2 mM MgSO ₄ -7H ₂ O	29.4 mg	73.5 mg	147 mg	294 mg
5.5 mM glucose	100 mg	250 mg	500 mg	1 g
4.8 mM L(+) lactic acid (hemicalcium salt; C ₃ H ₅ O ₃ -1/2 C	52.7 mg	131.75 mg	263.5 mg	527 mg
Antibiotic cocktel Gibco BRL (10 mg/ml streptomycin)	0.1 ml	0.25 ml	0.5 ml	1 ml
Phenol Red (1% stock)	0.1 ml	0.25 ml	0.5 ml	1 ml
Wittens/HEPES				
15 mM HEPES (acid)	357 mg	894 mg	1.787 g	3.575 g
0.01% PVA (polyvinyl alcohol, MW 30-70,000)	10mg/100n	nl		

Filter both media in Nalgene Filterware (0.2 μm cellulose nitrate filter)

Oocytes staining

- 1- Oocytes washing with PBS/0.1%BSA.
- 2- Fixation:. Mix 500ul of PBS/BSA with 500ul of PFA 7.4%. Place the eggs in drops of 3.7% Paraformaldehyde for 30 minutes at 4°C.

Fixation solution: 7.4% (74mg/ml) PFA stock at -80°C.

740mg PFA + 10ml PBS + 2drops of NaOH 5N ---- warm up until solved. Bring to pH=7.4, make aliquots of 500ul and store at -80 $^{\circ}$ C.

- 3- Wash 3 times in PBS/BSA.
- 4- Incubate the eggs with Hoechst 33342 (final concentration 10ug/ml) for 10 minutes at RT. (Stock 1000X, dilute in PBS/BSA).
- 5- Wash 3times in PBS/BSA and mount in slides with mounting solution. Add drops in the corners of the cover-slip before mounting. Keep in dark and refrigerador.

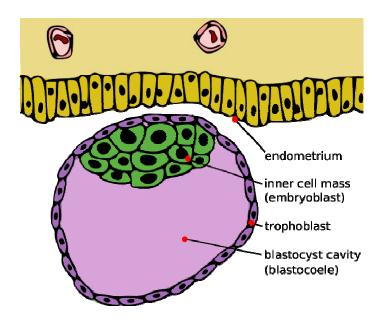
Culture of embryos in vitro

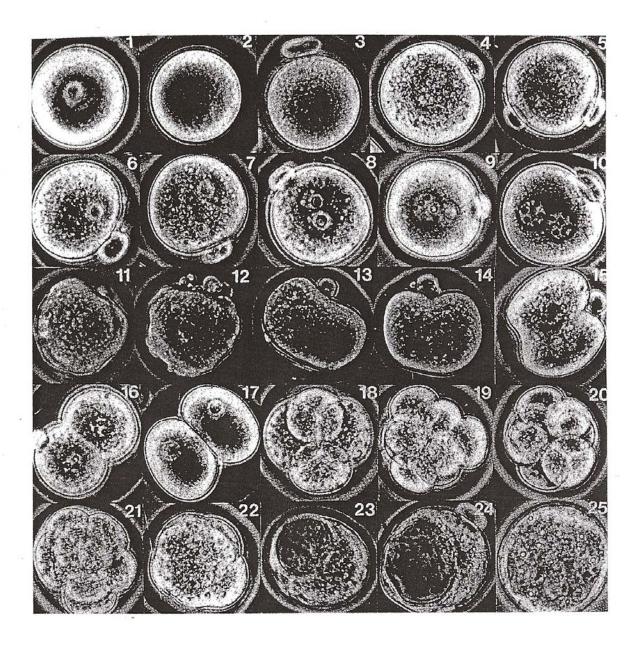
Females should be weeks old or more. Male should be older than 10 weeks.

- -Induce super-ovulation and put the male and female together at the same moment of injection of hCG. It is possible to mate 1 male with 2 females.
- -Next morning check for the formation of the "plug" in the female vagina. If mating was successful, separate male from female.
- -24 h after fertilization, morning after plug was observed, extract 2-cell embryos from female oviduct.

Flushing of the embryos:

- -Prepare a tube with 9.5 ml of Whittens-Hepes and add 500 ul of FCS (aliquots of 500ul aliquots kept at -20C). Separate 500 ul of the WH-FCS for oviducts. And keep the rest at 37C
- -Use KSOM-BSA to prepare incubation drops (30ul) and keep at 37C with 5% CO2 for at least 2 hs.
- -Dissect oviducts from females (try to keep some of the uterus to facilitate the recognition of the ampulla path). Place oviducts in the eppendorf with 500ul of WH-FCS.
- -Cut the tip of a 30G1/2 needles up to half its size. Fill up a syringe with WH-FCS and flush the oviducts. You should be able to see the fimbria in the ampulla path and flush the embryos out through that side.
- -Incubate the embryos in KSOM drops for 24, 48, 72 and 96 h to obtain 4-cell, 8-cell, morula (12-32 cells) and blastocyst stage respectively.


KSOM Stock A (10X)


	mM (final)	g/100ml
NaCl	95	5.55
KCI	2.5	0.1864
KH2PO4	0.35	0.0476
MgSO4 (7H20)	0.2	0.0492
CaCl2(2H2O)	1.71	0.2514

	mM (final)	/100ml
Stock A		10 ml
NaHCO3	25	0.21 g
EDTA stock 500mM	0.01	2ul
Glucose	0.2	0.0036g
Glutamine	1	0.0146g
Lactate	10	143.6ul
Pyruvate	0.2	0.0022g
Penicillin/Streptomycin		
stock		500ul

Finally add BSA at 1mg/ml and then filter. Keep up to 2 weeks at 4C

You can keep Stock A in the freezer as 11 ml aliquots

Dr. H. Pratt, Department of anatomy, University of Cambridge.